SF3584: Block 1

Bounds with eigenvalues/pseudospectra. Flexible GMRES. Left, right, preconditioners. right-hand
side dependence bounds.

Block leader: Elias
Time-period: 16 Feb - 13 March
Reading material:

e Convergence bounds for iterative methods

o Eigenvalues & pseudospectra: Book Spectra and Pseudospectra, Trefethen and Embree. Pages
12-23, pages 244-253. (Scanned pages here: https://kth.instructure.com/groups/33520/files)

o Right-hand side dependence: Paper. GMRES convergence bounds that depend on the right-
hand-side vector. David Titley-Peloquin Jennifer Pestana Andrew J. Wathen. IMA Journal of
Numerical Analysis, Volume 34, Issue 2, 1 April 2014, Pages 462—479,
https://doi.org/10.1093/imanum/drt025

e Preconditioning variations:

o Left-right preconditioner, & split precond for GMRES and CG: Book by Saad Iterative methods.
Section 9.2-9.3. Book available online: http://www-
users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf

o Flexible GMRES: Paper by Saad: http://epubs.siam.org/doi/abs/10.1137/0914028

Lecture material:

e Slides from course intro lecture: "Presentation lecture 1.pdf" here:
https://kth.instructure.com/groups/33520/files/folder/block1

e Giampaolo notes from lecture: https://drive.google.com/open?
id=14eLJHxILoyaFifGA8JpFOHOe2fRcWLs5 (Giampaolo writes: I think it could be a good idea to
share our personal notes. This can help us, for example, in fixing typing errors. Do not feel forced to
share your own notes and/or check mine, do it if you want to)
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You can add problem slots by through "edit this page"”

Pseudospectra & pseudospectra bounds

Problem 1-1

‘1. What is pseudospectra?
2. How can it be used to describe the convergence of iterative methods? (GMRES)

3. Which phase of the GMRES-iteration can (potentially) be better described with pseudo-spectra bounds
than eigenvalue based bounds, the beginning or end?



Solution 1-1

1. Pseudospectra may be viewed as a generalization of eigenvalues. The e-pseudospectra of a matrix A
consist of all eigenvalues of matrices which are e-close to A. See Problem 1-3 for two of the several
equivalent definitions of pseudospectra.

2. Pseudospectra can be used to describe the convergence of iterative methods. This can be done, as by
Trefethen, by using pseudospectra in combination with the Dunford-Taylor integral. For any polynomial
Pi € Pj, and a matrix A

Pr(A) = 37 frpe(2)(2I — A) ' dz.

For a fixed € we may let I' = I'¢ be the union of contours enclosing the pseudospectrum o¢(A4).

lpe(A)| < 55 fi [26(2)III (2T — A) 7| d]]-

By the definition of pseudospectrum in Problem 1-3 together with a contour integral bound

Ipk(A)]| € 7= maxeere [pr(z)] . (1)

where L. is the arc length of I'e.

For GMRES we have the well known result C l a'v ®

It < min,ep, pop 2@ (2)

Insertion of (1) into (2) gives the psedospectra bound

lIrsll L, .
m = Tre Ty, P, p(0)=1 TNAX2eT'e IPk(Z)'

Comment: I saw afterwards that this is similar to one of the answers below. For further details, see below.

3. Pseudospectra bounds gives a family of bounds, one bound for each epsilon and can potentially better
describe the first phase of the GMRES-iteration.

Moderator comment: Correct. I extended solution 3 slightly marked with color.




Problem 1-3

The first definition of pseudospectra: The values 2 € C such that

I(z— 47 > e

The second definition: The values z € C such that z is an eigenvalue of A+E

for a matrix E € C™*" such that || E|| < e.

1. There is a small error in the definition above. What is the error?

2. Prove that the two definitions are equivalent.




Solution 1-3

Solution by Parikshit

(1) The error lies in the second definition, where instead of the weak inequality || E|| < €, one needs to have
the strong inequality ||E|| < e. We assume as given that € > 0.

(2) Proof of equivalence:

Let us define 0y (A) = {z € C,||(z — A)7}|| > ¢ '} and
03(A)={z€C,zc 0(A+ E),E € CY",||E|| < €}

Let z € C. We assume that 2 ¢ o(A) because the equivalence is trivially satisfied in that case. Hence,
zeoi(4) = ||[(z—A)Y|=a!, O0<a<e

By definition of matrix norm, Jv, u € C", ||v|| = ||u| = 1 such that

(z—A)lw=alu

= w—Au=av

We can construct F = avw* (where w*u = 1) so that Bu = av and ||E|| = a < e (If || - || is the 2-norm,

then w = u*. For other arbitrary norms, the existence of w is equivalent to the existence of a corresponding
linear functional L on C" such that L{u) = 1 and ||L|| = 1, which is guaranteed by the Hahn-Banach

theorem).

Hence,3E € C™" and ||E|| < e such that zu — Au = Bu

= z2c€0(A+E),||E| <e

= z € 03 A)

= 01(4) C 02(4) Condition(1)

Assuming z € oa(A) Nl'c e !
= zco(A+E),||E|l<e '
= FveC|lv||=1,and (z — A)v= Bvorv=(z— A) " Ev

= 1=||v|| < ||(z— A)7}||||E|| (By Holder's inequality)

= [lz= A7 > [|B7 > e

= z€01(4A) = 01(4) D 02(4) Condition(2)

By condition(1) and condition(2), we see that o1 (A) = o3(A) which proves equivalence of the two
definitions.

Moderator comment: Correct. Nice!




Problem 1-34

Problem by Parikshit

Consider the following definition for pseudospectra provided in Trefethen and Embree,

o.(A) ={z€ C",||(z— A)v|| < ¢,where v € C", ||v|| = 1}

Prove that this definition is a consequence of the second definition of pseudospectra as defined in Problem 1-
3.

Solution 1-34

By the second definition in Problem 1-3 we have that o(A) is the set of z € C : z € o(A + E) for some
E e CVV with || B|| < e

Suppose A € CV*¥ and E € C¥*¥ with || E|| < e. For the pseudoeigenvalues z € oA + E) and its
corresponding normalized pseudoeigenvectors 0 # v € C, ||v]| = 1 we have the equation

(A+Ev=2v & (2—A)v=Ev.
Hence
[(z — A)l| = || EBv|| < || E][lv]| = | ]| <e.

Thus for z € oe(A) we have that ||(z — A)v|| < € for some 0 # v € CV with ||v|| = 1.

Moderator comment: Correct.

Problem 1-9
In the Numerical linear algebra course you gave convergence factor predictions for the matrix

alpha=50;

m=100; rand(’state’,5);

A = sprand(m,m,0.5);

A = A + alpha*speye(m); A=A/norm(A,1);
b = rand(m,1);

a) Visualize the pseudospectra, for some relevant epsilon-values, using pscont.m (see Problem 1-6 for
installation of pscont.m)

b) For the pseudospectra in a) give convergence factor bounds and plot in a semilogy-figure. It is sufficient to
visually identify disks.

Solution 1-9




Problem 1-4

Terminology and detail questions Trefethen&Embree:

1. The Ritz-values of the Arnoldi process (eigenvalues of H-matrix) can be expressed as pseudo-eigenvalues
(elements of the pseudo-spectra). What is €?

2. What is the Ideal GMRES-problem?
3. What is the Dunford-Taylor integral?

4. (optional, difficult?) There is a gap in the derivation of equation (26.12) from the integral equation
stemming from the Dunfort-Taylor integral. Provide the missing reasoning.



Solution 1-4

Solution

(1)

After m steps of Arnoldi we get the following relation
AVi, = ViHp + bt 1,mVmiem

Let (6, z) be an eigenpair of Hy, in particular @ is a Ritz value. By multiplying the Arnoldi factorization by z
we get

AViyz = Vi Hy 2z + hm+1,m'um+1e£z
AVyz=0Vypz+ hm+1,mvm+1eﬂz

By using that Vy, is orthogonal, i.e., Vit Vin = I, we get
AViz = V2 + Bmt1,mVUm+1€m Vi Vinz

(A = Pt 1,mVms1€m Vi ) Vinz = 0Vpz

The last equation tells us that 8 is an eigenvalue (with eigenvector V,,2) of a perturbation of the matrix A.
More precisely is an eigenvalue of A + E with E = hm_l_l,mvaeﬂV,f . By using that V,,, is orthogonal we
get

I Bl = [|hm+1mVm+1€m Vi || = Fmiim

Therefore 0 € o-(A) with € = hmt1,m- *

)
The GMRES minimizes (GMRES problem) the reminder 7, = Ax,, — b, in the sense that

Irll = i lp(A)ro]

p(0)=1

Observe that rg = b. The ideal GMRES is obtained by consider the minimization problem without the
reminder

: A
s lp(A)|

p(0)=1

Observe that in this case, the optimization does not depend on the RHS b. Moreover we usually consider the
ideal GMRES in order to have the error bounds (like the disk argument), since by using the sub-
multiplicativity of the norm we have (starting from the GMRES problem)

ol _
ol = demm l2(A)|
p(0)=1

And we have derived the convergence result (except for the RHS dependence) starting from this relation.

(3)



Let f(2) be a function that can be evaluated to a matrix. Then the matrix function f(A) fulfills the following
equality (Dunford-Taylor integral formula)

) = 3 i ()l — A)dz

Where I'is a closed curve containing the eigenvalues of A and f(z) is analytic in the bounded region
defined by I.

Observe that this is a generalization of the Cauchy's formula for matrix functions.

This result can be applied to the GMRES convergence result (ideal GMRES) as

p(O)-—l P(U)—l

(4)

We now want to derive the pseudospectra bound (equation 26.12). We will use the following well known
bound for contour integral:

| §r f(z)d2| < Lmaxyer |f(2)]

where L is the length of the curve I'. By directly using this result together with the Dunford-Taylor integral
formula with I' = I, the curve defining the pseudospectra o,(A), we obtain

Il N -t

Tl = min [P = min |5 § ()T — ) asl
p(0)=1 p(0)=1

<3, min mexp()(e - 4)) < 35 min max|p(a)| min max (a7 - 4)7|
p(0)=1 p(0)=1 2(0)=1

By definition of pseudospectra (first definition 2.1) we have that
maxr, (1 — 4)7!| = 7

By replacing this in the previous inequality we obtain the pseudospectra bound for GMRES (26.12).

Moderator comment: Nice extensive self-contained explanation!




Problem 1-11

Visualize the eigenvalues of the K-matrix from problem 1-10 capacitor tunable piezo domain K.mat. Plot
the 50 smallest and the 50 largest eigenvalues in one plot.

a) Linear system Kx=b. Why will GMRES never work for this problem without preconditioning?
b) Linear system (K-I)x=b. Is this easier or more difficult to solve than (a). Why?

(Can be solved with standard eigenvalue bounds / theory.)



Solution 1-11
Solution by Emil:

a) The 50 largest and 50 smallest eigenvalues(measured in absolute value) of K were computed with EIGS
in matlab, and a plotted in the figure below.
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The blue dots are the largest, and the red circles are the smallest. To further magnify the difference we plot
the separated in the two plots below.
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The eigenvalues are all spread out quite close to zero. For the explanation we assume that the the right-hand-
side b does not have a "nice" structure, but rather is a linear combination of (almost) all eigenvectors. Hence
for GMRES to converge, the Krylov space needs to contain a polynomial that efficiently approximates the
matrix K on (almost) all eigenvalues. The spread of the eigenvalues makes a disc-reasoning impossible, and
the approximation needs to be something along the lines of individually approximating each eigenvalue.
Hence the polynomial needs to be of high degree, and hence many iterations are needed.

We also plot the 99 largest eigenvalues, excluding the largest. This further shows how bad the eigenvalue
spread is.
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b) The linear system (K — I)z = b is much easier to solve. The matrix (K — I) has the same eigenvalues as
K, except that they are all shifted with —1. Thus given the eigenvalue spread above, we can conclude that
the eigenvalues of (K — I) will be spread very close to —1. With a disc-reasoning we then get that

m
l:l::||l| < (%) with p < 0.06 and ¢ = 1. Thus in at most 7 iterations the error is below 1078, we plot the

convergence of a 100 iterations with GMRES for K, (K — I), and (K — 0.03I). The last one also gives
good convergence, since the eigenvalues are still clustered, but not too much around zero.
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We see the poor convergence for K. But the shifted versions have good convergence (although there exists
some shifts, like for example(K — 0.01I) that gives worse, but perhaps acceptable, convergence).

Moderator comment: Correct!




Problem 1-5

The pseudospectral bound in Trefethen&Embree:

Pseudospectral bound for GMRES

i
Theorem 26.2 Let I be o union of contours. enclosing o.(A). Then

L,

_—
Tooll S im llee(A) < 57 min mex |pe(z)l,  (2612)
Pa(0)=1 m-(ﬂ)=ll= ‘

wheve L, ia the are length of I.

A matrix has eigenvalues located at

10,11,12,13,....100

The matrix is normal, and it turns out that the epsilon-pseudospectra consists of a union of discs of radius

epsilon (for all epsilon).

a) Derive a general formula containing epsilon (hint, reasoning similar to "Numerical linear algebra" course).

b) Visualize the bound for several different epsilon in a semilogy-plot. Which epsilon-value is most

predictive for many iterations?




Problem 1-6

A matrix has the following pseudospectra for some value of €:

0.6 X
0.4
0.2

i

L.

0 )

-
0.2
-0.4

0.6 ¥
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Which of the matrices does it correspond to?

a) A=(tril(ones(10,10),1)-triu(ones(10,10),-1))/10;
b) A=(tril(ones(10,10),1)+triu(ones(10,10),-1))/10;
¢) A=(tril(ones(10,10))+triu(ones(10,10)))/10;

d) A=(tril(ones(10,10))-triu(ones(10,10)))/10;

Justify your answer by identifying properties in the figure and properties of the matrix.

Not needed to solve the problem: The figure was generated by running
>> pscont(A,4,500);
The pscont.m command is available here:

https://se.mathworks.com/matlabcentral/fileexchange/2360-the-matrix-computation-toolbox?
focused=5041522&tab=function

you also need cpltaxes.m.




Solution 1-6
Solution by Federico:

From the figure, we can see that all the eigenvalues are imaginary, and are pairs of complex conjugate.
Thanks to this, by noticing that matrices b) and c) are symmetric and consequently have all real eigenvalues,
we can rule them out.

Now the choice is between a) and d). To see whether it is one or the other, we can check the largest
eigenvalue in module. We check the one of matrix d), using the power method. Now, because the matrix has
two eigenvalues of largest module, but complex conjugate, A\; and A}, the power method would not

converge.

So, instead of applying the power iteration to the matrix A corresponding to d), we can apply it to A2, which
has two equal eigenvalues of same module, equal to the square of the module of the eigenvalues of A.

By running the power iteration, which will converge even if there are two identical eigenvalues with the
biggest module (as seen in wiki exercise A16 from last year's NLA), we find the value 0.39863, which has
square root 0.63137. This value is larger than the one in the figure, which lies just below 0.6, hence this must
not be the matrix with the spectrum and pseudospectrum in the figure.

The answer is consequently a). CdV"C +

Problem 1-17
Discovering properties of the pseudospectra:

(a) Prove thatoye(cA) = coe(A) where c is a complex number.

(b) Let D, be the disk (in the complex plane) centered in zero with radius . For which class of matrices it
holds 0,.(A) = o(A) + D,?

Hint: start testing this properties for diagonal matrices, Jordan blocks, 2x2 matrices, etc. No closed answer
required.

If it is too hﬂl‘d, jl.lSt show that T¢ (A) 2 O'(A) —+ DE' (Emil: I flipped the inclusion to match Theorem 2.2 in Trefethen and Embree)

(c) It is known that if A and B are diagonalizable and commute, i.e., AB = BA, then
o(A) + o(B) = o(A + B). Is this true for the pseudospectra? More precisely is
o.(A) + 0.(B) = o.(A + B)? If yes prove it, otherwise show a counterexample.




Solution 1-17
Solution by Emil:

a) We interpret co (A) = {z = cx |z € o,(A)}, which in turn means (by definition) that & is any complex
number such that ||(z — A)~}|| > e~!. This is equivalent to that z is any number such that

(3 — A)7|| > €1, which can be further simplified to ||(z — cA) || > (Je|e)~". Thus we conclude that
% € 0¢/e(cA). Finally we know that for any numbers & € o¢(A) and z € |¢c(cA) we have the relation

z = cx, which shows that co(4) = 0|gc(cA).

b)Trefethen and Embree, Theorem 2.2 states that if the norm is the 2-norm, then the equality is true if and
only if A is normal.

The equality obviously fails for the simplest type of Jordan blocks of size 2x2. Consider A = (1,1;0, 1),
which has a double eigenvalue in 1. Perturb it with E = (0, 0; €, 0). Then we can see that

o(A+ E) = {1+ 4/e}, which for an € < 1 is outside the ball D,. The example is illustrated in the
following plot, in which the pseudospectra is shown in 10-log scale fore = 10~*, 10~2 (blue respective
yellow circles).
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pscont([1,1;0,1]1, 4, 1e@0, [0.5, 1.5, -0.5, 0.5], [-2:-1])

The proof for the inclusion is o,(A4) 2 o(A) + D, is constructive in manner. Using the second definition of
pseudo-spectra we observe that for the specific choice E = §I, with € C and 0 < |d| < &, we have that
|E|| < € and that 0(A + E) = o(A) + 4. Thus having § arbitrary in the open ball D, gives the result.

c) This is not true. Consider the 2-norm, and A and B normal. Then by the above cited theorem

oe(A) = 0(A) + D, and o.(B) = o(B) + D,. Thus

oe(A) + 0¢(B) = 0(A) + D; + o(B) + D; = 0(A + B) + 2D, = (A + B) + D3, which is not equal
tooe(A+ B) = o(A+ B) + D..

In words one could say that when constructing o.(A) and o(B) separately, one can do a maximal and

constructive perturbation in the eigenvalue corresponding to the same eigenvector for both A and B and thus
get a larger total perturbation in the sum, than one could do on the matrix A + B.



Moderator comment: Correct. (b) is difficult since the question sounds like sufficient and necessary
conditions for pseudospectra to consist of disc. (c): great insightful proof!

Problem 1-18

Problem by Emil:

In this problem we look at eigenvalue sensitivity, pseudospectra, and GMRES convergence.

a) Consider the following MATLAB code: _» aﬁahl ' se¢ Q‘(( ] 2 @ )

[Q,~] = gr(rand(n,n));

a = [-30-3*rand(n/3,1); -20-2*%rand(n/3,1); -10-2*rand(n/3,1)1;
Q*diag(a)*Q';

(A+A")/2;

A
A
S

balance(compan(poly(a)));

It creates a "well-behaved" matrix A which is symmetric and with prescribed eigenvalues in three regions of
the complex plane (Real line). The matrix .S is a balanced version of the companion matrix to A, and hence
mathematically it has the same eigenvalues as A. Thus from an eigenvalue analysis, GMRES should have
similar convergence behavior. However, the operations involved in constructing S are not well conditioned.

How can we see this if we compute the eigenvalues and the pseudospectra? (try n = 12 and 21, a plot like

pscont(A, 4, 100, [-40,0,-4,4]) could be nice).
M
lce @

b) Now instead consider the MATLAB code:

[Q,~]1 = gr(rand(n,n});

a = [-30-3*rand(n/3,1); -20-2*rand(n/3,1); -10-2*rand(n/3,1)];
S = balance(compan(poly(a))),

aa = eig(S);

A = Q*diag(aa)*Q';

It works similarly as above, but here we are more sure that A and S have the same eigenvalues, although not
fully as nicely distributed. create a random right-hand-side and consider the GMRES convergence behavior.

What can we say? How does the GMRES convergence look like? How does the pseudospectra of A and S
look like? (this is slightly more stable and hence we can consider n = 66, a plot like pscont(A, 4, 100,
[-80,0,-45,45], -10:1:0) could be nice).




Solution 1-18

Before discussing the solution, I point out that this exercise contains a very important message: the

seudospectra depends on the eigenvectors. Two matrices may have the same eigenvalues but different
pseuaospectra and in general, the sensitivity of the eigenvalues is described in function of the eigenvectors,
see this link or the Gene Golub book (Matrix computation). Therefore, it is not enough to know the spectrum
of a matrix in order to fully describe the behavior of GMRES.

(a) For n=12 the following is the pseudospectra of A

Qr K E 4 XK

-40 -30 -20 -10 0

B
whereas the following is the pseudospectra of S 1

a0 230

For n=21 the following is the pseudospectra of A
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Notice that the eigenvalues of A and S are numerically different (even if by construction they are
mathematically the same). This is due to the fact that the eigenvalues of S are too sensitive to small changes
(ill-conditioned) and matlab is not able to compute them in a stable way.

(b)

Even if the matrix S is now constructed in a more stable way, all the reasoning of the point (a) is still valid.
We now consider n=66.

The following is the pseudospectra of A (generated as pscont(A, 4, 500, [-80,0,-50,50],-10:1:1);)
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Here we can see the convergence of gmres for A
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whereas here we see the convergence of gmres for S
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Clearly for S gmres does not converge even if A and S have the same eigenvalues. This is explained by the
reasoning in (a). The convergence of GMRES does not depend only on the eigenvalues but also on their
sensitivity (described by the eigenvectors). By using the theory that we saw in the class we can use the

pseudospectra bound for the convergence of gmres we have
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el < %= min max |p(2)|
Iroll = 27 geg(p)<m T

p(0)=1

We can clearly see that for the matrix S the constant L, is very large, therefore the transient phase will be
very long.

A short (and naive) answer to this second part can be given by using the standard theory for the convergence
of GMRES. More precisely we have

lral .
0 o
o = #(Va) o max |p(z)

p(0)=1

FIXED: Moderator comment: \cond(A) should be \cond(V), where V eigenvector matrix. See GMRES on wikipedia

Where V4 is the matrix containing as columns the eigenvectors of A. We now compute the condition
numbers (V) = 1 and k(Vg) = 1.7572¢ + 16

Conclusion:

for gmres we have that the asymptotic convergence is characterized by the spectrum whereas the transient
phase is depends on the sensitivity of the eigenvalue (that is related to the eigenvectors) and it is
characterized by the pseudospectra.

Moderator comment: Great solution. I agree that "the pseudospectra depends on the eigenvectors”. I would
phrase it as "the pseudospectra of diagonalizable matrices can be described with eigenvectors".

Problem 1-19
Problem by Emil:
This problem relates to 1-17 b), but you do not need to solve that one to do this.

a ) Let g¢(A) be the 2-norm pseudospectrum, let W(A) be the field of values (also called numerical range),
ie., W(A) ={z|z=v*Av, v € C", ||v|y = 1}, and let D, be a ball of radius & centered at the origin.

Show that o.(A) C W(A) + D,.

b) Show that for €,8 > 0, then o,(A) + Ds C 0..5(A). Here o, can be any norm-pseudospectra.




Solution 1-19 \
Solution by Federico:

a) From the third definition of the pseudospectra (Higham and Embree, Spectra and Pseudospectra, p.16):
o.(A)={z€C st. JveC, |v|| =1, ||(zI — A)v| < €}

and we want to prove that, for the 2-norm pseudospectrum, 2z = y + z, where y € W(A) and ||z||» < e.

Let z € 0,(A), and v the vector from the definition; let w = v*(2I — A)v. Then

w = 2v*v — v* Av = 2||v|7 — v*'Av = z — v* Av

hence z = w + v*Av = w + u, where |w||z < ||v*|2]|(2] — A)v|2 < € and u € W(A). The thesis is
proved.

b) Let z € o.(A), and let v unitary such that ||(2] — A)v|| < €; letz € Dy. Then
[((z+ 2)I — A)v| = [|(2I — A)v+ zv|| < ||(=T — Aol + [|=|l||v]| <&+ N" g

which proves that 2 + & € ge15(A).



Problem 1-20

Problem by Emil: (inspired by GVL section 7.9)

For powers of matrices we have that if the spectral radius is less than 1, p(4) < 1, then limp o, || A*¥|| = 0.
pe(4)-1) .
where p.(A) is the

€ 3

From pseudospectra we also have the following bound: supj || A*||; >
pseudospectra spectral radius, i.e., ps(A4) = maxyeq, (4 |Al.

a) Consider the matrix
A =[0.,99, 100; 0, 0.99]

Plot || A¥|| for many different values of k (like k = 1,2, ..., 2000). What can we see? Does it fit the bound?
Can you find an € that gives an approximation of the "bump"?

b) Is the phenomena due to numerical computations? Try with making A symbolic. When is this an issue in
practice?

c) Prove the bound. (This is technical, and hence a few hints/outline is provided)

Hints:

1)If | A¥|| < Cforallk=0,1,..., then (A — 2I) 1 = T2, Z%A’* forall |z| > 1.

2) Consider ||(A — 2I)™Y|| = ™, which we write as || (A — 2I)~!|| = Izii-l for K = pg(‘:)_l

that p,(A4) > 1.

and |z| = ps(A), where we assume

3) Prove that K < supysg || A¥|| by observing that in the case of the rewriting in 2) then by using 1), one can show that
K .1 (1 4 mmio 144 )

=11 = Tl |z=1

4) Observe that for pseudospectrum ||(4 — zI) || > &, but this can be written as ||(A — zI)~|| = e~ + 4, so that the relation
in 3) is still valid.

Solution 1-20

Problem 1-35
a) Derive an explicit expression for the pseudospectra of a diagonal matrix A

b) Based on the explicit expression in a derive a family of bounds for GMRES (independent of RHS-vector
b)

c) Provide a plot which compares the bound for different eps-values and the residual norm. You can use
matlab GMRES-implementation explained in Problem 1 15.

Solution 1-35

Problem 1-36



Solution 1-36

RHS-dependent bounds

Problem 1-10
Krylov subspaces properties and RHS
We want to use GMRES for solving Az = b where 4 € R™*"

(a) Assume that b is a linear combination of m < n eigenvectors of A (for example m = 10 eigenvectors).
After exactly how many iterations GMRES converges?

(Elias: You can assume the linear combination has non-zero coeff's, i.e., b = a;2; + + - - @@y, where a; are non-zero)

(b) Let W an invariant space for 4, i.e., AW C W with dim(W) = m < n. Assume thatb € W.
After exactly how many iterations GMRES converges?

Hint: these properties directly come from the Krylov space structure. Try to answer the question form =1
and then generalize.




Solution 1-10
Solution by Parikshit:
(a) Since we are given that A € R™ " has a full set of n eigenvectors, it is diagonalizable as A = ZAZ .

ix A is diagonalizable and not all the matrices are diagonalizable.

Also, since b can be written as a linear combination of exactly m eigenvectors, we can write

w; #0, 1<i<m

b=Zw,wherew,-={0 ol g O
] — —

Note that we have assumed without loss of generality that the m eigenvectors we refer to occur as the first m
columns of Z

Hence, using the RHS bound result for the GMRES residual and substituting for w, we have,

lrall e
< |2 lmingess (z: i 2 pA) )

[[roll

From the above inequality we can make the upper bound zero by choosing p to be a polynomial with atmost
m distinct roots/eigenvalues A;, ¢ =1,...,m, which we are allowed to do since

p € P} Hence, we have 0 < ||rm||/||ro|]| £ 0 = #m = 0. This means that GMRES will converge after a
maximum of exactly m = 10 iterations. The convergence might occur before 10 iterations if all the
eigenvalues are not unique.

Problem author comments: even if you added the hypothesis that that matrix is diagonalizable, I accept this solution that is correct
WﬂyMYMWm&m@mmmMgu—ymm Tell me if you

;4“ . Sel

Moderator comment: Correct (under additional assumption). 9 “J !

Problem 1-25

Solution 1-25




Problem 1-26

Learning RHS-bounds on your own. This is suitable to be solved before careful reading of the RHS-paper.

In the numerical linear algebra course we learned that GMRES generated iterates satisfying:
Irmll = min,e po lp(A)B|

Assume that A = ZAZ ™! is a diagonalization (A is a diagonal matrix). Let w = Z~'b/||b].

a) Show that p(A)b = ZWp(A)e. What is W? what is e?
b) Show that ||ry, || < || Z]| min,,cpo || Wp(A)e||2. What are the elements of Wp(A)e explicitly?

c) How is the derivation related to the RHS-paper? (It's not exactly the same.)




Solution 1-26

Solution by Parikshit:

(@) We are given that A is diagonalizable as A = ZAZ~! and Zw = b/||b||
Hence, substituting for A and b, we get,

p(A)b = p(ZAZ ™) Zw||b]|= Zp(A)w][b]| Equation(1)

Letting W = ||b||diag{w) = w||b|| = We, where eis a vector of all ones.

This leads to
Zp(A)w||b|| = Zp(A)We = ZWp(A)e Equation(2)

(Since multiplication of diagonal matrices is
commutative)

Combining Equation(1) and Equation(2) completes the proof.

(b) Using the result from the numerical linear algebra course and substituting for p(A)b

using the result from (a), we have,

|Irm|| < mingyeps||ZWp(Ae|| < [|Z]|minyeps|[Wp(Ae]|

@i

Note that Wp(A)e is a vector whose i-th element is ||b]|w;p(A;), where w; is the coefficient of the é-th
eigenvector when b/||b|| is written as a linear combination of the eigenvectors(i.e. columns in Z)

(c) The derivation in the paper is different in the following way:

Instead of assuming ZW = b/||b||, the assumption is ZW = r¢/||ro||, where 7q is the initial residual.(Note

that rg = b if 2y = 0)

Moderator comment: Great solution!




Problem 1-14
RHS-bounds for Jordan blocks. Jordan blocks are not as scary as they appear.

a) Adapt the RHS-bound result (in the paper or Problem 1 26) to a matrix with a Jordan block. That is, show
a corresponding bound is when the matrix is not diagonalizable but

J
A=Z . z

An

where J is a k x k Jordan block.

b) Derive an explicit formula for p(J) when p is a polynomial, and find a polynomial p\in P_mA0 such that
p(J) is a diagonal matrix and p(z)=g(z)h(z) where g\in P_{m-k+1}. . .

c) Specialize the bound in (a) by using (b) and derive a result which directly depends on the eigenvalue
location and weights.

Solution 1-14

Problem 1-8

Setup a sparse linear system of equations using FEM-solver system FeNICS. You will need to install the
python framework for Fenics. This tutorial may be of use

https://fenicsproject.org/pub/tutorial/sphinx1/. ftut1004.html

Moderator comment: This problem can help us understand the performance of the preconditioners we use
later. So downloadable easy-to-use mat-files would be nice.




Solution 1-8

The solution is very technical and I think I did not understand every detail. However I succeeded to generate
sparse matrices form fenics and import them into matlab.

I will now point what you need to do and then I will attach three examples in fenics that you can reverse-
engineering and generalize to other PDEs.

PART 1 (python-fenics):
You need to add in the python script the following lines (in the beginning):

o parameters|'reorder_dofs_serial'] = False # to avoid reordering/permutations of the matrices
e from scipy.io import savemat # to save the matrices
o parameters.linear_algebra_backend = "Eigen" # too technical to explain

After this, you can use fenics to define the PDE. Then you have to construct the stiffness matrix, convert it
to CSR data, extract the sparse array format and save it in a format that matlab can read. In compact, this is
done with the following lines of code that you have to add at the end of the script

e A, b= assemble_system(a, L, bc);
rows,cols,vals = as_backend_type(A).data() # Get CSR data w&t' do uc '
A = as_backend_type(A).sparray() .
savemat('Elasticity.mat', {"A": A,'b":b.array()})

PART 2 (examples):

The .py files are scripts in python that generate a .mat file that you can load with matlab. The .mat file
contains matrix and RHS of the linear systems derived by a FEM discretization of the associated PDE.

e Example 1: a standard Poisson problem poisson membrane.py.

e Example 2: a Poisson problem with a more challenging domain (square with an hole in the middle)
poisson membrane 2.py.

e Example 3: a 2d elasticity problem elesticity.py.

o If you do not have Fenics yet and you just want to see/test the matrices, just load the files Poisson.mat,

Poisson 2.mat, Elasticity.mat




Problem 1-15

Run GMRES on a diagonal matrix with consisting of elements 1:n

>> nN=100;
>> A=spdiags((1:100)',0,100,100);
>> b=randn(100,1);

The matlab implementation of GMRES (without restarting) can be run in this way in order to get a
convergence diagram:

>> [X,FLAG,RELRES, ITER,RESVEC] = gmres(A,b,length(b));
>> semilogy(RESVEC)

You get the following convergence diagram

/

One of the curves is with random RHS b one and the other with

>> b=zeros(n,1); b(50:60)=1;

(a) Which RHS correspond to which curve? Relate to theory for RHS-convergence of GMRES

(b) If we take RHS: b=zeros(n,1); b(90:100)=1; Do we get faster or slower convergence. Relate to RHS-
convergence theory




Solution 1-15
Solution by Emil:

a) The fast (red) curve relates to the structured RHS (b=zeros(n,1); b(50:60)=1;) and the slow (blue curve)
relates to the random RHS.

The matrix A is a diagonalizable matrix (it is diagonal and hence trivially diagonalizable). The eigenvectors
are the corresponding unit vectors e;. By considering Theorem 2.2 in Titley-Peloquin, Pestana, and Wathen,

1/2
the GMRES bound can be written as Illl mllll < mingem,, (E?:l |w,-|2|q(/\,-)|2) , where I, is the set of
g(0)=1

polynomials of degree max m, and w; is the the projection coefficient of b (the RHS) onto the é-th basis
vector in the eigenvector basis. For this problem, that means that w; is simply the ¢-th component in the b,
i.e., w; = b;. With that in mind, we can, for the structured b, rewrite the bound as

1/2
-Iﬁ:—':ﬁl- < minge, (2?150 |q()\.-)|2) . Thus full convergence is guaranteed in only 11 iterations. However,

g(0)=1
m
with a disc-reasoning based on this bound we can say that llil mllll S ( ) , where we can now take p = 5,

and ¢ = 55, since the only eigenvalues involved in the last sum are 50, 51, . . ., 60. Thus an error of 1075 is
reached in at most 6 iterations, which is exactly what is observed in the figure.

This type of reasoning is not possible for a random b since in general we will have w; # 0 for all . Some
eigenvalues can be "down prioritized", but that is still not giving the same acceleration and simple bounds to
compute. A simplified bound could be argued for by using 10 iterations to "remove" the eigenvalues 1-10.
Then a disc-argument on the rest would give something like p = 40, and ¢ = 50, which would give that

after 10+40 = 50 iterations the error would be bounded by 1.33 - 10~*. This is simplified behavior is not
exactly what is observed, but it goes somewhat along with the observed convergence.

Nice

b) If the RHS is changed (to b=zeros(n,1); b(90:100)=1;) the convergence will be faster. One can do a
similar argument as the one in a), both in terms of only regarding some eigenvalues, and also the disc-
reasoning. However, this time the disc would be p = 5, and ¢ = 95 and thus providing an error of 1078 in at
most 5 iterations. Compare the convergence rates 5/95 = 0.053 and 5/65 ~ 0.091.

Moderator comment: Correct.

Problem 1-27
Problem by Parikshit:

Prove that if B can be diagonalized as B = ZAZ ™!, then for any arbitrary non-singular matrix X € C™*",
the GMRES residuals satisfy the following inequality,

Irell 11K | 172 (B ' Zymin e pymazsc,(5)la())|

lImol| —

where 7 =
[Iro|l




Solution 1-27
Solution by Federico:

To prove this, we start from the original form for the norm of the residual:

l7ellz = min ¢ o [lg(B)roll2

where Pok is the space of polynomials of degree at most k such that have value 1 in 0. We start by bringing
the norm of ry inside the norm on the RHS, and use the identity I = KK

""ﬁ"! =, . To - . -1 -1 %o
2k _ minpy Hq(B)m | =min,py [KKqBKK 0| <

2 Mice.

because of the presence of Z and its inverse, the polynomial can be written as Zg(B)Z '

< 1Kol Kl min e py || K~ q(ZAZ)K]|, =

< K2l K7 |2] K = 22| K Z |2 minge py [|a(A) [l = [ K]|2]| K ~*# |2k (K ~* Z) min gy [|g(A)]l, <
< 1Kol K 71| 22(K — Z) min, ¢ pr maxye (s la(N)]

i
and the lemma is proved. -
s

Problem 1-28

ution 1-

Problem 1-29

Solution 1-29

Problem 1-30

s

Solution 1-30

Problem 1-40

Solution 1-40

Problem 1-41

Solution 1-41




Incorporating preconditioners in iterative methods

Left-right-split preconditioners. Flexible GMRES.

Problem 1-13

What is

a) Left preconditioning?
b) Right preconditioning?

c) Split preconditioning?

Solution 1-13
Assume we want to solve the system Az = b. Furthermore let the matrix M be a preconditioner.
a) Left preconditioning means applying the preconditioner from the left

M4z = M.

b) Right preconditioning means applying the preconditioner from the right
AM 'y =b, z = M lu.

Note that this corresponds to the change of variable v = Mz.

c) Assume M is factored M = My Mp. Typically My, and Mp, are triangular matrices. The preconditioning
can then be split

M;PAMZ 'y = M;'b, == Mg'u.

Note that split preconditioning may be used to preserve symmetry, since we can select My, and Mpg such that
M, AM 5 ! is symmetric if A is symmetric.

Moderator comment: Correct!




Problem 1-21
Flexible GMRES with BICGSTAB as preconditioner

We want to solve (in matlab) the system Az = b with A € R™" with flexible GMRES and BICGSTAB
(with variable number of iterations) as preconditioner.

(a) Complete the following script of flexible GMRES. More precisely as preconditioner Mz we consider
the function M(j,x) that perform j steps of bicgstabl (implemented in matlab).

n=200;
e = ones(n,1);
A = spdiags([e 2*e e], -1:1, n, n);

b=rand(n,1);
norm_b=norm(b);

V(:,1)=b/norm_b;

o118 wil dw,md Q.

for j=1:m
205 1M s mmmamivane 55 6 5 8 );
V(i J )= ammmmren o ey ;

h=V(:,1:7)'*V(:,j+1);
V(:,j+1)}=V(:,j+1)-V(:,1:7)*h;
g=V(:,1:)"*V(:,j+1);
V(:,j+1)}=V(:,j+1)-V(:,1:j)*g;
H(1:j,])=h+g;
H(j+1,j)=norm(V(:,j+1});

V(:, J+1)=V(:,j+1)}/H(j+1,]});

el=eye(j+1}; el=el(:,1);
y=H\ (norm_b*el);

XR=: : ancaaa 3
err(j)=norm(A*xx-b};

end

semilogy(err};

(b) Assume that we perform in total m=30 iterations of flexible GMRES. Now change the preconditioner in
the previous script in a way that M(j,x) does m-j+1 steps of bicgstab. Does the situation change? Notice that
the total complexity of the two script is the same.

(c) Now change the preconditioner in a way that M(j,x) does m steps of bicgstab (notice that this is still not a
constant preconditioner). Does the situation change? Notice that the total complexity is now increased. Do
we get any benefit in comparison with (b)?

(d) As you have noticed in the previous points (a) and (b), if we have the preconditioners M;, My, Mj, ...
the order in which we use them is important. After the point (a) and (b), can you reach any conclusion? It is
better to use "better" preconditioners at the first iterations and "worse" preconditioners at the last iterations or
vice-versa? Do you think this is a general property? Test it more changing the matrix A and the '
preconditioners.

Note: this approach is not completely meaningless. Indeed, bcgstab require, as memory O(n) independently
on the number of iterations, whereas gmres requires O(mn) memory. However, for many problems bcgstab

may not work but still be a valid preconditioner and GMRES may require too many iterations (and memory)
without the usage of a preconditioner.



Solution 1-21

Solution by Emil:

A packed version of GMRES and FGMRES are available among the files for Block 1 and called
my_GMRES and my_FGMRES, see the problem 1.23.

a) Modifying the given code in this problem we come up with the solution

clear; close all; clc;

n=200;
e = ones(n,l);
A = spdiags([e 2*e e], -1:1, n, n);

b=rand(n,1);
norm_b=norm(b};

V(:,1)=b/norm_b;

m=30;
TOL = -inf;
M=@(j,b) bicgstabl(A,b,TOL,j);

for j=1:m

Zity ] )=,V (0) )5
V(:,j+1)=A*Z(:,3);
h=V(:,1:)"'*V(:,j+1);

Vi, J+1)=V (e, J+1) =Nz, 11])*h;
g=V(:,1:3)"'*V(:,j+1);
V(:,j+1)=V(:,j+1)-V(:,1:j)*g;
H(1:j,j)=h+g;
H(j+1,j)=norm(V(:,j+1));
V(:,j+1)=V(:,j+1)/H(j+1,5);

el=eye(j+1); el=el(:,1);
y=H\ (norm_b*el);
xx=Z(:,1:7)*y;
err(j)=norm(A*xx-b);

end

semilogy(err);

The convergence looks like:
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b) The change in the script is minor. The only difference is that the preconditioner is now defined by




M=@(j,b) bicgstabl(A,b,TOL,m-j+1);

and the convergence looks like:
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c) Once again the change to the code is minor, and the preconditioner is defined by
M=@(j,b) bicgstabl(A,b,TOL,m);

The convergence now becomes:
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where we can notice that the change from b) is only minor, convergence is like one or two iterations faster.

d) A comparison with the two plots in a) and b) indicate that the convergence is improved by starting out
with a better preconditioner, rather than using a good preconditioner in the end. I am not sure if this is (or at
least if I can prove that it is) better to use a good preconditioner in the beginning, like in b), but I guess so.
My intuition is that a good preconditioner will help capture the "good" subspace to search for the solution,
and if that is done in a better way early in the process, then a "better" subspace will be built.

Further tests with with the FEM-matrix
nn = 50;

A = gallery('wathen',nn,nn);

n = size(A,1);

and the random matrix

n = 200;

rng(123456789)
A = gallery('uniformdata',n,n) - 4.5*%eye(n,n);




yeild similar results.

Moderator comment: Correct!

Problem 1-22

Let A be a matrix such that

m
ZA-‘":I

=0

with m small, and let M = AP. We want to solve Mz = b.

If use GMRES with P as left preconditioner, in how many iterations will it converge?

o If use GMRES with P as right preconditioner, in how many iterations will it converge?

Solution 1-22

If P is such that P = @2 and we use @ as split preconditioner, in how many iterations gmres will
converge?

Usually one reads in books (including Saad) that left and right preconditoner are practically equivalent,
in the sense that if we use P as left or right preconditioner we obtain the same performance. Can you
explain in which sense are they equivalent?

(Optional) Write a matlab code for the first two points, including generating such matrix A with, e.g.,
m = 4.

(Optional) Can you find an example where a matrix P works better as left preconditoner and worse as
right preconditioner (or in general it is more beneficial to use it in that way)? (This does not contradict
the previous point). No simulation required, it is enough to present an argument.



Problem 1-23

Problem by Emil:

This is a (slightly artificial) problem about Flexible GMRES (FGMRES) and the change of preconditioners.

It is inspired by problem 4.12 in the Numerical Linear Algebra course.

a) Consider the MATLAB code:

n = 100;

TOL = le-11;

MAXIT = 30;

h =1/(n+l);

Dxx = spdiags((1/h"~2) * [l*ones(n,1l), -2*ones(n,l), l*ones(n,1)1, [-1,0,1]1, n, n);
I = speye(n);

f = @(x,y) abs(x-y);

g = @(a,x,y) a*((x-1/2).72+(y-1/2).72) .~ (1/2);

x = linspace(h,1-h, n);

y = linspace(h,1-h, n);

[X, Y] = meshgrid(x, y};

G =g(1.56, X, Y);

A = kron(Dxx, I) + kron(I, Dxx) + spdiags(G(:), @, n"2, n"2);
F=TF(X, Y);

b=F(:);

prec = @(C) lyap(Dxx, -C);
apply _prec_1 = @(x) reshape(prec(reshape(x, n, n}}, n*2, 1});
apply_prec_2 = @(x) reshape(prec(reshape(x, n, n)) + le-10*symmpart(rand(n,n)), n*2, 1);

]

[x_gmresl, r_norm_gmresl, error_gmresl]
[x_gmres2, r_norm_gmres2, error_gmres2]

my_GMRES(A, b, TOL, MAXIT, apply_prec_1);
my_GMRES(A, b, TOL, MAXIT, apply_prec_2);

This is applying GMRES to solve a discretized PDE: 2, (2, y) + 2, (2, y) + g(2,¥) - 2(z,y) = f(z,y),
and preconditioned with solving the Lyapunov equation, i.e., the discretized version of
Zoe(®, Y) + 2y (2, y) = k(z, y). However, for the second preconditioner, this one is artificially disturbed

with a random noise. What can be observed here? How big/small does the disturbance be? Plot the
convergence in relative residual and in relative error.

b) Describe the changes that needs to be done to convert GMRES to FGMRES. Use this to make similar
convergence plots. What can we see? How big/small can the disturbance be? What can be the reason?

Hint: Consider the eigenvalues of the preconditioned matrix o(M 1 A4) = o((M14)T) = c(AM 1)

c) Test with other functions f and g.

d) Test with a perturbed preconditioner of the type

prec2 = @(C) lyap(Dxx + le-2*symmpart(rand(n,n)}, -C);
apply_prec_2 = @(x) reshape(prec2(reshape(x, n, n}), n*2, 1};



Note: The functions my_GMRES and my_FGMRES are provided in the files:
https:/kth.instructure.com/groups/33520/files/folder/block1

Solution 1-23

Problem 1-7

Flexible GMRES question:
Equation (1) in Saad's paper states
AZ, =V,.H,,

Prove that this relation reduces to the standard Arnoldi relation if M; = M, i.e., M is constant.

Solution 1-7

By construction of the algorithm we have that z; = Mjv; (see Saad or Problem 1-21). Therefore, if
M; = M we can write Z,, = MV,,. By replacing this expression in the Arnoldi-like factorization, we get

AZm — Vm+1Em
AMVy = Vi H,,
Observe that this is an Arnoldi factorization for the matrix AM.

Moderator comment: Correct!

Problem 1-38

Proposition 2.1 in the Saad's flexible GMRES-paper does not have a proof (and is expected to follow
"trivially" from the above reasoning which is debatable). Provide the details, i.e., prove the following.

Proposition 2.1: The approximate solution &,, obtained at step m minimizes the residual norm
16— Az,
over

x € x9 + Span(Z)

(You may assume x_0=0 to see analogy with our standard GMRES-bounds.)

Solution 1-38




Problem 1-2

Setup a sparse linear system of equations to use as benchmark problem using COMSOL.

Examples and comsol-multiphysics files:
https://www.comsol.com/model/12385
https://www.comsol.com/model/8577

https://www.comsol.com/model/3576

https://www.comsol.com/model/847

Moderator comment: This problem can help us understand the performance of the preconditioners we use
later. So please provide downloadable easy-to-use mat-files which do not require comsol. Hopefully we will
be able to do better than the solvers in COMSOL.




Solution 1-2
Here is the procedure to export to MAT-files:

At a KTH-desktop computer you need to start the LiveLink framework of COMSOL (for communication
with MATLAB-process) by running:

$ module add comsol

$ comsol server

Username: Myname

Password: Not important

Repeat password: Not important

Username and password can be chosen as you like.
Start MATLAB and run

>> addpath('/opt/comsol/5.3/mli'};

>> mphstart

>> mphlaunch;

>> model=mphopen( 'blabla.mph"')

>> MM=mphmatrix(model, 'soll', 'out',{'K'});
>> size(MM.K)

>> K=MM.K;

>> save('/tmp/myfile.mat','K")

The matrix (K-matrix) of the MEMS device described here (https:/www.comsol.com/model/tunable-mems-
capacitor-123) can generated following the procedure above. Here is the discretized matrix:

capacitor tunable piezo domain K.mat

Here is the solution visualized in COMSOL.:

A slight variation applied to the heat conductor problem gave:

disk stack heat sink 52a.mat




Problem 1-12
A nonlinear preconditioner

We want to solve the linear systems Az = b with the preconditioner M(z). We have always assumed that
the preconditioner is given as a linear function M(z) such that M(z) ~ A~'2. More precisely we assumed
that there is a matrix P ~ A~ such that M(z) = Pz. In this exercise we will try to softer this assumption.

(a) Assume that M(z) = % where P is a matrix. Observe that M{x) is a nonlinear function. Can we

1P|’
use GMRES with this preconditioner? Can we use flexible GMRES instead? (This would make sense if in
our application we know that the solution has norm one).

(b) Assume that M(z) = a(x)P=z where & : R* — R is a nonlinear function and P is a matrix. Can we use
GMRES with this preconditioner? Can we use flexible GMRES instead?

(c) Following the previous point, prove that, similar to Problem 1-7, the Arnoldi-like factorization
AZ,, = Vi1 H,reduces to APDy,, Vy, = Vi1 H,,, where Dy, is a diagonal matrix.

(d) [Optional] Which other nonlinear functions M(x) we can use as preconditioner? Give other examples.

Solution 1-12

Problem 1-16

This problem concerns Example 12.1 (page 107) in the publicly available teaching literature
http:/www.asc.tuwien.ac.at/~winfried/teaching/106.079/SS2017/downloads/iter.pdf

a) The preconditioner has to be faster computed than the actual (exact) inverse. Why is this the case in this &
preconditioner? (This is a small problem so it does not matter so much but for larger problems the same
technique can be improved.)

b) Run the problem for a random RHS. Is it faster? Why?

c) This is a small problem, plot the pseudospectra of the original problem and the preconditioned problem
and explain why the preconditioner works.

d) (Optional/fun) The author of the document has put the legend on top of some of the data in the figure,
which violates the first rule of plotting, what matlab-commands moves it? (Or do it in julia)

Another problem with the plot in the example is the use of a log-log scale. It is easier to identify properties of
the method in a semilogy plot, instead of a log-log.

Solution 1-16




Problem 1-31

Consider solving the linear system Az = b with the preconditioned conjugate gradient method of Algorithm
9.1 (Saad, Chapter 9) with the symmetric positive definite preconditioner M = LLT, where L is the
Choleksy factor.

Show that this is equivalent to solving the preconditioned system

LYAL Tu =L

where u = LTz with the conjugate gradient method.




Solution 1-31
Solution by Federico:

The preconditioned CG has the following structure:

7'0 = b — A:DO
z20=Mlrg
bo= 2o
for i=1,2,...
R )
= (Ap;.p5)

Tjt1 = &j + 0p;
Ti1 = 1 — a;Ap;
Zjtr1 = M_l'."j_;_l

(r4+1,241)
ﬂJ = (r.fiz.f)

Pir1 = Zjy1 + Bip;
end
but we now consider M = LLT where L is the Choleski factor. We explicitate M in the expression for zj:
Zir = M 7rjn = (LLT) i = LT L g = LT

and from this we make explicit the inner products of §;:

B; = (rszgna) (b L) (E'rpl i) (Frafa)
I (rsr25) (ri LT L1rj) (L1, L1ry) (Fsf's)

and of a;: we want (Ap;, p;) = (ﬁﬁj, D), where A=L71ALT,
(Apj, pj) = (AL~TLTp;, L-TLTp;) = (L AL-TL"p;, LI7p;) = (Ap ;, 5;)
Now we can rewrite the steps of CG:

. (F573)
%= Gapy)

, and then, by multiplying from the left by LT,

LTxjp = LTxj+ a;LTp; = Zj1 = @5 + a;p;.

By multiplying from the left by L1,

ri1 =1 — ajAp; = T =7;—a;L AL TLTp; =7, — a,-.:iﬁj

By multiplying from the left by LT,

Pini =2 +Bip; = Dy =L LT, + Bib; =T+ Bib,



This is the CG corresponding to the system
A% = L1, where & = LTg. In fact the starting conditions is

Ffo=Lrg=L'0— L 'Azg =L 'b— L *AL TL gy = L~ 'b — A%

Problem 1-32

Show that the spectra of the operators corresponding to left, right and split preconditioning are identical. Le.
show that if the preconditioning matrix M is factorized as M = LU then M 1A, AM~! and L 'AU !

have the same eigenvalues. ®
M won-w g o
Solution 1-32
Seolution by Parikshit:
Let us assume (A, z) is an eigenpair of M ~1A. Then,
M~1Az = Az & AM~(Mz) = A(Mz) & Az = A\LUz & L 1AU Y (Uz) = A(Uz)

Hence, M A, AM ' and L= AU ! have identical eigenvalues with eigenvectors z, Mz and Uz
respectively.

Problem 1-33
Compare right versus left preconditioned GMRES.

a) Describe the most relevant differences, e.g. what residual norm is to be minimized, difference in generated
Krylov subspace etc..

b) The spectra of the operators M ' A and AM ~are identical and hence their convergence behavior should
be similar according to convergence theory based on eigenvalues. However there is still situations when
there could be a substantial differences in convergence behavior. Give at least one example of such a
situation.

Solution 1-33

Problem 1-37
Problem by Parikshit:

Assume that we are applying a Krylov subspace procedure for the system Az = b using a preconditioner M
which is related to A by the following relation: M = A — R, where R has significantly less non-zero
entries compared to A. At each step of the iteration, we must perform the transformation w = M1 Av
Given that A and M are related in a specific way, is there a more efficient way to perform this
transformation without computing Awv explicitly at each step?

Solution 1-37

Problem 1-39




Solution 1-39




