
Selected Exercises {Main}

1 SF2524BlockA.A8
Prove the following.

Theorem: Suppose (λ, x) ∈ R × Rn is an eigenpair of A ∈ Rn×n and assume ‖x‖ = 1. Let v = x + Δ

be an eigenvector approximation. Then, for sufficiently small ‖Δ‖,

r(v) − λ =
O(‖Δ‖2)  if ATx = λx

O(‖Δ‖) otherwise

.

In particular, if AT = A then

r(v) − λ = O(‖Δ‖2)

The proof was done in Lecture 1.

Edited by EJ, Anonymous

2 SF2524BlockA.A37
We know how to approximate the largest eigenvalue λ1 with the power method. If λ1 and x1 are
known, show that applying the Power Method to the starting vector q0 = (A − λ1I)q (with q an
arbitrary vector) leads to an approximation of λ2.

Edited by Anonymous

3 SF2524BlockA.A16
In the power method it is assumed that the eigenvalues are distinct in modulus (ASM1, lecture 1).
What happens when this assumption is removed? For example, consider the case when the two
largest eigenvalues are identical.

Edited by DE

4 SF2524BlockA.A23
A matrix has eigenvalues α, 10.1 + i, 10.2 − i, …, 100 + i, 110. To which eigenvalue will the power
method in general converge if...

a) α = 20?
b) α = − 20?
c) α = 200?
d) α = 10.1 − i?

This exercise is the same A27 but for the Arnoldi method.

Edited by EJ

5 SF2524BlockA.A3
Please show and discuss the following, assuming that A is a square matrix:

If (λ, x) is an eigenpair of A and A −1 exists, then (1 /λ, x) is an eigenpair of A −1.1. 
If (λ, x) is an eigenpair of A and μ ∈ C, then (λ − μ, x) is an eigenpair of A − μI.2. 
Supposing that A − μI is invertible, how are the eigenvalues of (A − μI) −1 related to the
eigenvalues of A?

3. 

{



Edited by kj, EJ

6 SF2524BlockA.A9
A matrix A has eigenvalues 1, 2, 3, 4, 5, 5 + 5i, 5 − 5i. To which eigenvalue will inverse iteration in
general converge if the shift is selected as

a) μ = 1.2

b) μ = 100

Edited by EJ

7 SF2524BlockA.A7

Consider the matrix A =

3 1 0 0

0 2 0 1

0 0 1 0.2

0 0 0 0.5

.

How many iterations are needed to approximate the eigenvector corresponding to the largest
eigenvalue up to a tolerance of 10 −3, i.e. ‖v ( k ) − x1‖ ≈ 10 −3, using

the power method
inverse iteration with μ = 2.6

inverse iteration with μ = 2.9?

Edited by LL, EJ

8 SF2524BlockA.A17
Match convergence predicted by convergence theory with appropriate curve for method...

1. Rayleigh quotient iteration for the matrix A =
2 1

1 2

2. inverse iteration

3. Rayleigh quotient iteration for the matrix A =
2 − 1

1 2

Justify your answer.

[ ]

[ ]

[ ]



Edited by EJ

9 SF2524BlockA.A1
Describe the Rayleigh qoutient iteration.

Edited by EJ, SJ, EJ, Anonymous

10 SF2524BlockA.A4
What is the result of two steps of Rayleigh quotient iteration applied to the matrix

A =
1 0

0 5

with the starting vector

x0 =
1

√2

1

1
?

Edited by Anonymous

11 SF2524BlockA.A24
In what sense does the Rayleigh quotient iteration work better for symmetric matrices than for
non-symmetric matrices?

Edited by Anonymous

12 SF2524BlockA.A5
Suppose A = AT and v = x + Δ where x is an eigenvector and ‖Δ‖ is of order of magnitude 0.2.
How large is the error in r(v) approximately?

Edited by EJ

13 SF2524BlockA.A11
The Rayleigh quotient iteration was shown to have a very fast convergence towards some
eigenvector, in the symmetric case, AT = A, we have

‖v ( k+1 ) ± xj‖ = O(‖v ( k ) ± xj‖
3) and | λ ( k+1 ) − λj | = O( | λ ( k ) − λj |

3)

[ ]

[ ]



However, which eigenpair (λj, xj) is approximated depends on the initial guess and is not fixed.

It is possible to obtain a second eigenpair of A = AT by applying the iteration to the matrix
A1 = A − λjxjx

T
j . Why?

Edited by M, LL, EJ

14 SF2524BlockA.A37
We know how to approximate the largest eigenvalue λ1 with the power method. If λ1 and x1 are
known, show that applying the Power Method to the starting vector q0 = (A − λ1I)q (with q an
arbitrary vector) leads to an approximation of λ2.

Edited by Anonymous

15 SF2524BlockA.A31
The power method applied to a specific matrix A ∈ Cn×n gives the following convergence plot.

Let | λ1 | > | λ2 | > ⋯ > | λn | . The largest eigenvalue is λ1 = − 4. What is | λ2 | ?

You may make the standard assumptions for the convergence theory of the power method are
satisfied (such as a1 ≠ 0 and a2 ≠ 0).

Explain what information you extract from the figure.

Edited by EJ

16 SF2524BlockA.A47
Simplify the following expressions where c and x are vectors in Rn

a) 
∂

∂x
(cTx)

b) 
∂

∂x
(xTx)

where 
∂

∂x
= [

∂

∂x1
, …,

∂

∂xn
] .

Edited by ML

17 SF2524BlockA.A62
Show that the Rayleigh quotient, for a given eigenvector approximation v, minimizes



minα∈ R | |Av − αv | | 2 = | |Av − r(v)v | | 2

Edited by mb

18 SF2524BlockA.A61
Provide support for the claim:
Any eigenvalue solver must be iterative

Edited by mb

19 SF2524BlockA.A15
We run the following matlab code.

  

  >> Q=[1 -1; 1 1 ; 0 0]/sqrt(2);

  >> w=[1;-1;1e-8];              

  >> h=Q'*w        

  >> y=w-Q*h

  >> beta=norm(y);

  >> qnew=y/beta;

  >> Qnew=[Q,qnew]

  >> norm(Qnew'*Qnew-eye(3))

  ans =

   2.2888e-08

a) Which numerical method is this?
b) What do we expect "ans" to be if we would not have rounding errors?
c) What other methods have we learned about in this course that can solve this problem, and
potentially be less sensitive to rounding errors?

Edited by EJ, Anonymous

20 SF2524BlockA.A12
Describe the modified Gram-Schmidt method.

Edited by EJ, Anonymous

21 SF2524BlockA.A63
Compare the efficiency of classical and modified Gram-Schmidt in terms of the number flops the
respective algorithm require.

Edited by bo

22 SF2524BlockA.A13
Given a subspace span(q1, …, qm) of which q1, …, qm is an orthonormal basis. How can the
Rayleigh-Ritz approximation of eigenvalues of A ∈ Rn×n corresponding to this subspace be
computed?

Edited by EJ

23 SF2524BlockA.A14
Suppose the matrix Qm and H

_ m
 satisfy the Arnoldi relation

AQm = Qm+1H
_ m

where Qm+1 = [Qm, qm+1] ∈ Cn× (m+1 )  is an orthogonal matrix and H
_ m

∈ C (m+1 ) ×m a Hessenberg

matrix.



Show that Hm = QT
mAQm where Hm ∈ Cm×m is the upper submatrix of H

_ m
.

Proven during Lecture 3.

Edited by EJ

24 SF2524BlockA.A10
What is the Arnoldi factorization?

Edited by EJ

25 SF2524BlockA.A20
In the Arnoldi method, what can we say about the eigenvalues of H when A is nilpotent? (A
nilpotent if ∃k > 0 | An = 0 for all n > k)

Edited by FI

26 SF2524BlockA.A21
Why has there been the need for the algorithm modifications of Gram-Schmidt, like Modified
Gram-Schmidt and Repeated Gram-Schmidt?

Edited by FI

27 SF2524BlockA.A25
Prove the following (proven during Lecture 3).

Lemma: Suppose Qm and Hm satisfy the Arnold relation and suppose that the Krylov matrix

Km(A, b) := [b, Ab, …, Am−1b]

has full column rank (rank(Km(A, b)) = m), then the columns of Qm span a Krylov subspace, in
other words

span(Qm) = span(Km(A, b)) = Km(A, b).

Edited by EJ

28 SF2524BlockA.A28
What is the relationship between the Arnoldi method and Lanczos in exact arithmetic?

EJ's addition: "In exact arithmetic" means that we assume that we do not have any rounding
errors.

Edited by jr, EJ

29 SF2524BlockA.A29
Suppose λ1 = 1 and λ2 = λ3 = ⋯ = λn = 3. Give an explicit expression for the m-dependent
coefficient in the convergence bound of Arnoldi's method for eigenvalue problems. In other words,
find an explicit formula for

ϵ (m )
1 = min

p∈Pm − 1 ,p ( λ1 ) =1
max ( | p(λ2) | , …, | p(λn) | )

in this case

Edited by EJ

30 SF2524BlockA.A32
A matrix A has eigenvalues distributed as in the figure below.



Which eigenvalue/eigenvalues can be well approximated with...

a) The power method
b) The Arnoldi method applied to A
c) The Arnoldi method applied to (A − μI) −1 where μ = 300

Justify your answer.

Edited by EJ

31 SF2524BlockA.A34
Prove that if two rectangular matrices W ∈ Rn×m and V ∈ Rn×m with n ≥ m are related by: W = VP

for some non-singular matrix P ∈ Rm×m, then span(W) =  span(V). This is used in lecture notes,
1.3 in Gram-Schmidt procedures.

Edited by Ni, Anonymous

32 SF2524BlockA.A35
In the convergence analysis for the Arnoldi method, the quantity ‖(I − QQT)xi‖ is considered as an
indicator of error in eigenvector xi.
Justify this indicator with a geometric reasoning.

Edited by M

33 SF2524BlockA.A30
Describe the Lanczos iteration.

a) How the upper Hessenberg matrix will look like.
b) How an algorithm is build.
c) For what type of matrices are Lanczos iteration used?

Edited by Anonymous

34 SF2524BlockA.A38
How are the eigenvalue approximations computed from the Arnoldi factorization in Arnoldi’s
method for eigenvalue problems?

Edited by EJ, Anonymous

35 SF2524BlockA.A40
Give an intuitive interpretation of the quantity ϵmi  which is defined in Theorem 1.4.2 (Lecture

Notes).
Show two examples, one in which this quantity is small (favorable) and one in which this quantity is
large (not-favorable).



Edited by M

36 SF2524BlockA.A41
Let the Arnoldi iteration (see [TB] page 252) yield hk+1 , k = 0 after k steps. Then AQk = QkHk. Let
(λ, x) be an eigenpair of the upper Hessenberg matrix Hk. Show that (λ, v) is an eigenpair of A and
specify the eigenvector v.

Edited by st

37 SF2524BlockA.A43
Based on the arnoldi.m code on the web page, how do the Q and H-matrices differ when calling

  [Q,H]=arnoldi(A,b,10)

and

  [Q,H]=arnoldi(A,2*b,10)

Give an explanation (not only a matlab-code).

Edited by EJ

38 SF2524BlockA.A49
Suppose that U ∈ Cn×m and V ∈ Cn×m are two orthonormal basis of the same subspace. We
know from question A34 that there exists a non-singular matrix R ∈ Cm×m such that UR = V. Show
that R is orthogonal, that is R ∗R = RR ∗ = Im.

Edited by Be, An

39 SF2524BlockA.A51
Give a general description of the eigenvalues that are favored by the power method and by the
Arnoldi method, respectively.

Edited by ML

40 SF2524BlockA.A52
Theorem 1.4.2 in the lecture notes states that

| | I − QmQ
T
mxi | | ≤ ξiϵ

m
i

In the proof of this theorem are the following identities used:

minz∈Cm | | u − Qz | | 2 = | | (I − QQT)u | |

minz∈Cm | | αixi − Qz | | = miny∈Km (A ,b ) | | αixi − y | |

Explain why those two identities hold. The proof of theorem 1.4.2 was also done during the lecture
of 8 of November.

Edited by Anonymous

41 SF2524BlockA.A53
Proof (show) the convergence of Shift and Invert Arnoldi and why this is faster than normal Arnold

Edited by Anonymous

42 SF2524BlockB.B1



What is the (minimization) definition of the iterates of GMRES?

Edited by EJ

43 SF2524BlockB.B4
Prove that the residual norm of the GMRES-iterates are non-increasing based on the definition of
GMRES-iterates as defined in B1.

Edited by EE, EJ

44 SF2524BlockB.B5
In GMRES, the convergence can be estimated by a convergence factor as follows:

| |Axn − b | |

| | b | |
≤ | |V | | | |V −1 | | min

p∈P0
n

max
i=1 , . . . ,m

| p(λi) |

Prove this and describe another way to compute the convergence.

Edited by Anonymous

45 SF2524BlockB.B7
Prove that for any matrix A and invertible matrix V we have

Km(V −1AV, b) = V −1Km(A, Vb).

Edited by EJ

46 SF2524BlockB.B10
Let Qk be the orthogonal matrix of the Arnoldi method. Explain why Q ∗

k b = | | b | | e1

Edited by JW

47 SF2524BlockB.B11
Show that if D is a diagonal matrix and p any polynomial then:

| | p(D) | | 2 = max
i

| p(Di , i) |

You may find the following useful:

| | p(D) | | 2 = max
| | x | | 2 =1

| | p(D)x | | 2

(This equality is used in the convergence estimates)

Edited by JW

48 SF2524BlockB.B12
Give bounds of

min
p∈P0

n

( max
i

( | p(λi(A)) | ))

for the matrices A1 and A2. Justify clearly what properties of the figure you extract.



Edited by EJ

49 SF2524BlockB.B13
Assume GMRES is applied to a symmetric positive definite matrix. How does the convergence
bound (Main convergence theorem of GMRES) simplify? (Hint: Compare with the right-hand side
of the CG bound TB Thm 38.3 and the following deductions)

Edited by LL

50 SF2524BlockB.B14
Prove that GMRES will terminate in a finite number of steps.

Edited by CR, An

51 SF2524BlockB.B15
Suppose two matrices are related by B = − A. Consider the linear systems Ax = b and Bz = b.
Prove that the approximation error of GMRES is the same for both problems.

Edited by An

52 SF2524BlockB.B16
Suppose the matrix A ∈ Rm×m is diagonalizable, but that many eigenvalues are equal. More
precisely, assume that it only has 10 different eigenvalues (and m ≫ 10). Use the min-max bound
for GMRES to show that GMRES returns the exact solution after 10 iterations. You may assume
that it does not break down before that.

Edited by EJ

53 SF2524BlockB.B18
Does GMRES have disadvantages in terms of computation time? Explain your answer.

Edited by M

54 SF2524BlockB.B46
Prove that



x ∈ Kn(A, b) ⟺ b − Ax = p(A)b  for some p ∈ P0
n

Edited by M

55 SF2524BlockB.B37
Lemma 2.1.3 in the lecture notes states that for any A ∈ Cm×m and b ∈ Cn

{b − Ax : x ∈ Kn(A, b)} = {p(A)b : p ∈ P0
n}

where p(A) and P0
n are defined in the lecture notes.

Describe what is meant by that two sets are equal to each other, like the ones above.

Edited by Anonymous

56 SF2524BlockB.B64
Let λ1, …, λm be eigenvalues of a matrix A. The eigenvalues are given in the figure below.

a) Provide a bound for the quantity

min
p∈P0

n

max
i=1 , … ,m

| p(λi) |

b) How is this related to the convergence of GMRES?

Edited by EJ

57 SF2524BlockB.B65
Given z ∈ Rn and an orthogonal matrix Q ∈ Rm×n, with m ≥ n, show that | |Qz | | 2

2 = | | z | | 2
2.

Edited by ML, JW

58 SF2524BlockB.B2
Suppose A is symmetric positive definite.

What is the relationship between the approximations generated by GMRES and the



approximations generated by CG?

Edited by jr

59 SF2524BlockB.B3
State the minimization property of CG (sometimes also used as a definition of CG).

Edited by jr

60 SF2524BlockB.B44
Under certain conditions CG has in a sense a monotone convergence property. State sufficient
conditions and prove the monotonic convergence property of CG.

Edited by DE, JW, EJ

61 SF2524BlockB.B21
In the justification of the CG-method it is claimed that the residual norm with respect to the A −1

-norm equals the error norm with respect to the A-norm. Formalize and prove this.

Edited by EJ

62 SF2524BlockB.B22
TB Thm 38.5 contains a characterization of convergence of CG with condition number K. From this
result, derive an expression for the number of iterations required to reach a specified accuracy, for
large condition numbers K.

A sketch of this was given in lecture 7.

Edited by EJ

63 SF2524BlockB.B23
We store the vectors generated in CG in matrix form:

X = [x1, …, xn], R = [r0, …, rn−1], P = [p0, …, pn−1].

Derive three expressions between X, R and P from the individual steps of the CG-algorithm (in the
lecture notes or in TB).

Edited by EJ

64 SF2524BlockB.B19
Prove that the residual vectors rn of CG are orthogonal and the update vectors pn of CG are
A-orthogonal.

Edited by M

65 SF2524BlockB.B24
We usually say that the Lanczos method and CG-method are "short-term recurrence methods".
What is the meaning of "short-term recurrence" and why is it important?

Edited by EJ

66 SF2524BlockB.B25
a) Why does ‖z‖A = √zTAz only define a norm if A is symmetric positive definite?

b) Why is ‖z‖A − 1 a norm if A is symmetric positive definite?

Edited by LL, Anonymous

67 SF2524BlockB.B26
In general, the condition number of a matrix A is defined as K(A) = ‖A −1‖‖A‖. Show that for



normal matrices K(A) =
| λmax (A ) |

| λmin (A ) |
.

Edited by LL, EJ

68 SF2524BlockB.B27
Let A be symmetric and real. Show that σ(A) = | λ(A) | .

Edited by st

69 SF2524BlockB.B28
In the screendump below, why is the result zero (or almost zero)? Justify your reasoning by
relating it to a theorem in the course.

Edited by EJ, Anonymous

70 SF2524BlockB.B43
Application of CG. Solve by using a CG implementation the unconstrained quadratic optimization
problem,

min
x∈ R4

1

2
xTHx + cTx,

where the Hessian, H, is symmetric positive definite and given by,

H =

5 2 3 2

2 3 1 1

3 1 4 − 1

2 1 − 1 7

and c = − 2 8 − 2 4 T. Hint: Since the hessian is positive definite, the problem is convex and

[ ]
[ ]



thus the global optimal solution is given by the optimality conditions, Hx + c = 0.

Edited by DE

71 SF2524BlockB.B47
Let en be the error in step n of CG. Show that

| | en+1 | | A ≤ | | en | | A

Edited by mb

72 SF2524BlockB.B48
In the Conjugated Gradient algorithm, what is the meaning of the matrices P and R? What is the
relation between them? Under what hypothesis do they have the same span, and why?

Edited by FI

73 SF2524BlockB.B59
Below is a different formulation of an algorithm in this course (from the book Fundamentals of
matrix computations [1]):
a) Which algorithm?
b) How are the variables related to the variables in the standard formulation of the algorithm (make
references to the lecture notes PDFs)?



Edited by EJ

74 SF2524BlockB.B62

Take A =

1 0 0

0 1 0

0 0 2

 and b =

2

1

− 1

.

We solve Au = b.
Show that CG applied to this system should converge in 1 or 2 iterations.

Edited by EJ

75 SF2524BlockB.B30
What is the relationship between CG and CGN (sometimes referred to as CGNE)?

Edited by EJ

76 SF2524BlockB.B32

[ ] [ ]



State the condition number bound for CGN. How is it different from the condition number bound for
CG?

Edited by An

77 SF2524BlockB.B31
Prove that the iterates of CGN are minimizers of the residual with respect to the two-norm (similar
to GMRES). Unlike GMRES, the mininimization is done over space X. What is X?

Edited by EJ

78 SF2524BlockB.B33
Explain a situation where CGN may be more computationally competitive than GMRES?

Edited by EJ

79 SF2524BlockB.B39
Consider the preconditioner M −1 = LLT for some non-singular matrix L.

a) Show that applying M −1 as a left-preconditioner to the CG method results in the following
system:

LTALy = LTb

where x is afterwards obtained from x = Ly.

b) Verify that the LTAL is symmetric positive definite if A is symmetric positive definite.

c) Provide new expressions for the recurrence formulas in the CG method after applying the
preconditioner M −1. Note that the formulas can be simplified slightly by introducing p̂n = L −1pn

and r̃n = M −1rn.

Edited by mb

80 SF2524BlockB.B57
Let x0, … be the sequence of vectors which are minimizers in the optimization problem

min
♠

‖♣‖♡ = ‖Axn − b‖♢.

What are ♣, ♠, ♢ and ♡ for...
a) GMRES
b) CG
c) CGN

Edited by EJ

81 SF2524BlockB.B55
If the norm of | | x | | A, with A = I, show this is equal to taking the 2-norm of x.

Edited by BO

82 SF2524BlockB.B58
This problem was posed on the exam March 2016.



Edited by EJ

83 SF2524BlockC.C1
Describe the basic QR-method.

Edited by EJ

84 SF2524BlockC.Ca-11
Suppose the matrices A and B are related by

A = VBV −1

where V is a non-singular matrix. Prove that A and B have the same eigenvalues.

This is called a similarity transformation.

Edited by EJ

85 SF2524BlockC.C2
Why do we compute the Schur form and not the Jordan form in the context of QR method?

Edited by EJ

86 SF2524BlockC.C3
Prove that the iterates of the basic QR method have the same eigenvalues.

Edited by EJ, An

87 SF2524BlockC.C4
What is the difference between the QR factorization and the Schur factorization?

Edited by EJ

88 SF2524BlockC.C5
The QR factorization is not unique following the definition in the slides. Give a counter example.

Edited by EJ

89 SF2524BlockC.C6
Suppose

P =
I 0

0 I − 2uuT
∈ Rn×n,

where I ∈ Rp×p is the identity matrix, u ∈ Rn−p and ‖u‖ = 1. Give a vector v ∈ Rn with ‖v‖ = 1

[ ]



such that P = I − 2vvT. In other words, show that P is a Householder reflector.

This type of Householder reflector is needed in the Hessenberg reduction (phase 1).

Edited by EJ

90 SF2524BlockC.Ca-7
In Lecture 10 we learned that we could work column by column and with a similarity transformation
bring any matrix to Hessenberg form (by applying constructing several Householder reflectors of
the type in C6). Can we use the same technique to bring the matrix to triangular form instead of
Hessenberg? Why doesn't it work?

This (nice) question was asked by a student during lecture 10. Hint: An indication of what happens
can be found in TB.

Edited by EJ

91 SF2524BlockC.Ca-8
Suppose

A =

1 4 6

1 1 1

0 2 4

.

Let Ak be the iterates of the basic QR-method. What is ...
a) the element (3,1) of A1 ?
b) the element (3,1) of A100?

Relate to a lemma/theorem in the course.

Edited by EJ

92 SF2524BlockC.Ca-10
Let

P = I − 2uu ∗

be the Householder reflector associated with some u ∈ Cn such that | | u | | = 1. Show that

i) Pu = − u

ii) P ∗ = P

Edited by mb

93 SF2524BlockC.Ca-12
Find a Givens rotator G ∈ R6 such that

GT

− 1

2

1

4

3

0

=

− 1

2

1

⋆
0

0

.

What is ⋆ ?

[ ]

[ ] [ ]



Edited by EJ

94 SF2524BlockC.Ca-13
Let H be a Hessenberg matrix and let H = QR be its QR factorization. Prove that RQ is again a
Hessenberg matrix.

EJ's comment: Somewhat tricky since proof is not explicitly given in lecture notes. Hint for proof:
Use theorem 2.2.6 in PDF lecture notes, and look at the structure of Q = G1G2⋯Gn−1.

Hint for another proof: Use RQ = RHR −1 where R and R −1 are upper-triangular.

Edited by EJ, Be

95 SF2524BlockC.Ca-14
Select ?? in this program such that A becomes upper triangular after the for-loop.

  m=5;

  % Create a Hessenberg matrix A

  A=randn(m);  A=triu(A,-1); 

  for k=1:m-1

     r=??

     c=??

     s=??

     G=givens(i,i+1,c,s,m);

     A=G'*A;

  end

Edited by EJ

96 SF2524BlockC.Ca-15
Prove that the QR-method preserves symmetry. In other words, show that if A is symmetric, then
RQ is symmetric where Q, R corresponds to a QR-factorization of A.

Edited by EJ

97 SF2524BlockC.Ca-17
There are downsides with the basic QR-method and several improvements have been made to
improve the performance of the method. What are the downsides of the basic QR-method and
what are the ideas behind the improvements covered in the course?

Edited by DE

98 SF2524BlockC.Cb-2
Suppose a matrix has the following block structure

A =
A11 A12

0 A22
.

where A22 is upper triangular.

Prove that the shifted QR-method preserves the last block row. In other words, let B be the result
of one step of the shifted QR-method. Prove that B has the structure

B =
⋆ ⋆
0 A22

.

[ ]

[ ]



Edited by EJ

99 SF2524BlockC.Cb-3
In the lectures we claim that the shifted QR-method is a generalization of the basic QR-method. In
what sense is it a generalization?

Edited by EJ

100 SF2524BlockC.Cb-4
Prove that if μ is an eigenvalue of A, then A − μI is a singular matrix.

Edited by EJ

101 SF2524BlockC.Cb-5
Disadvantage 2 of the basic QR method, according to the lecture notes, is that it can be arbitrarily
slow and is often slow in practice. Give examples for a matrix (its eigenvalues) where the QR
method is very slow and one where it is not slow.

Edited by LL

102 SF2524BlockC.Cb-6
Prove that the shifted QR-method preserves symmetry. In other words, show that if A is symmetric,
then RQ + λI is symmetric where Q, R corresponds to a QR-factorization of A − λI for some λ.

Edited by mb

103 SF2524BlockC.Cb-7
Given the following matrix

A =

− 6.05 − 2.15 − 0.51

36.6 11.8 1.86

− 16.0 − 3.41 3.19

with eigenvalues

λ1 = 1, λ2 = 3.95, λ3 = 4

What is the expected number of iterations required for the basic QR method to converge?

Edited by mb

104 SF2524BlockD.Da-1
Give the Taylor definition of matrix functions.

Edited by EJ

105 SF2524BlockD.Da-2
State the Jordan form definition of matrix functions.

Edited by jr

106 SF2524BlockD.Da-4
Show that

det exp(A) = exp(trA) .

Edited by Be

107 SF2524BlockD.Da-5
Which of the following matrix structures are preserved by matrix functions? Suppose A is

( )



a) symmetric
b) tringular
c) hessenberg
d) anti-symmetric AT = − A

e) diagonal
f) orthogonal

Does f(A) have the same structure a,b,c,d,e?

Edited by EJ

108 SF2524BlockD.Da-6
Let A ∈ Rn×n be a given matrix and define

p(λ) = det (A − λI) = a0 + a1λ + … + anλ
n.

We now take the matrix function extension of the polynomial p(λ). Derive a closed expression for

p(A)

Hint: proof of Cayley-Hamilton theorem (which is probably my favorite theorem)

Edited by EJ

109 SF2524BlockD.Da-7
a) Give an explicit formula for

f(Aϵ)

when

Aϵ =
λ 1

0 λ + ϵ
.

b) What is limϵ →0f(Aϵ)? Is this consistent with the Jordan definition?

Edited by EJ

110 SF2524BlockD.Da-8
State the Cauchy Integral definition of Matrix Functions.

Edited by Anonymous

111 SF2524BlockD.Da-9
Show that f(A)f(B) = f(B)f(A) if AB = BA for any definition.

Edited by An

112 SF2524BlockD.Da-10
In the first lecture on matrix functions we saw the following application of matrix functions. Derive
the explicit formula for y(t) when A is symmetric.

[ ]



Edited by EJ

113 SF2524BlockD.Da-11
When is the Taylor definition of matrix functions a valid definition? Give a sufficient condition for
which f(A) is well defined through the Taylor-definition.

Edited by M

114 SF2524BlockD.Da-12
Compute explicitly exp(A) for

A =
2 − 1

0 1

by using JCF-definition of matrix functions.

Edited by M

115 SF2524BlockD.Da-13
There are several ways to define matrix functions. Name three different definitions and at least one
advantage and at least one consequence for each definition.

Edited by Anonymous

116 SF2524BlockD.Da-15

Prove the property f
A 0

0 B
=

f(A) 0

0 f(B)
, where A and B are n × n matrices, for a matrix

function f.

Edited by st

117 SF2524BlockD.Db-1
Let T be a triangular matrix with distinct eigenvalues and let

f(T) =

f11 f12 f13

f21 f22 f13

f31 f32 f33

.

a) Give the values for f11, f21, f31, f22, f32, f33 in term of the entries of T
b) Derive an explicit formula for f12 involving only elements of T and the values computed in
(a).

Edited by EJ

118 SF2524BlockD.Db-3
In the PDF-lecture notes, the following illustrates one step in the derivation the Schur-Parlett

( )

([ ]) [ ]
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method. Interpret the figure. What are the corresponding formulas?

Edited by EJ

119 SF2524BlockD.Db-2
Describe the Schur-Parlett method and the idea behind it.

Edited by DE

120 SF2524BlockD.Db-4
Algorithm 1 in Lecture Notes are an algorithm showing how to use the simplified Schur-Parlett
method. This method can be unstable, in what situation does this unstability accur? What can be
done to not obtain an unstable algorithm in this case?

Edited by Anonymous

121 SF2524BlockD.Dc-1
Use the interpolation property of matrix functions to derive an explicit formula for

exp
1 α

0 2
.

Edited by jr

122 SF2524BlockD.Dc-4
a) Find two matrices A and B such that

eAeB ≠ eA+B

b) Prove that

eA / 2eA / 2 = eA

[ ]



using any of the definitions of matrix functions we have used in the course.

Edited by EJ

123 SF2524BlockD.Dc-5
Use the following MATLAB output and compute an approximation of eA, as the result of scaling-
and-squaring where the initial approximation is computed with a truncated Taylor series. Solve the
problem by only adding or subtracting certain matrices or multiplying matrices by scalar values.

  >> B=eye(n)+A/(16)+A^2/32;

  >> BB=B^2

  BB=

   1.18380  -0.12917   0.10335

  -0.19689   1.27569   0.26426

   0.16304  -0.15383   1.02728 

  >> BB=BB^2  

  BB=1.44367  -0.33358   0.19438

  -0.44115   1.61216   0.58824

   0.39077  -0.37531   1.03150

  >> BB=BB^2

   2.30731  -1.09233   0.28490

  -1.11823   2.52545   1.46934

   1.13279  -1.12255   0.91917

  >> BB=BB^2

  BB =

   6.86790  -5.59880  -0.68577

  -3.73966   5.94995   4.74273

   4.91020  -5.10415  -0.48180

  >> BB=BB^2

  BB =

   64.738  -68.264  -30.933

  -24.647   32.132   28.499

   50.445  -55.402  -27.343

Edited by EJ

124 SF2524BlockD.Dd-2
In this youtube video from the Gene Golub summer school for PhD students at time-point 01:03:00
Nick Higham provides an example of a non-trivial square root of an identity matrix.

Prove that it is actually a square root of the identity matrix

The video is worthwhile to watch on its own.

Edited by EJ

125 SF2524BlockD.Dd-1
What is the Denman-Beavers iteration?

Edited by EJ

126 SF2524BlockD.De-1
The sign function (for scalar functions) is defined such that f(x) = − 1 if x < 0 and f(x) = 1 if x > 0.
Give a definition a matrix function definition of f consistent with this definition.

Edited by EJ

127 SF2524BlockD.De-2



State a quadratically convergent iterative method for the matrix sign function.

Edited by EJ

128 SF2524BlockD.De-3
Derive a definition for S = sign(A) function using the Jordan decomposition, and prove the following
properties:

S2 = I

S is diagonalizable and has eigenvalues ± 1

Edited by FI

129 SF2524BlockD.Df-1
Describe the method called Krylov method for matrix functions.

Edited by jr

130 SF2524BlockD.Df-2
What is a φ-function? For which values z is φ(z) analytic?

Edited by EJ

131 SF2524BlockD.Df-3
Give an explicit solution to the ODE

y ′ (t) = Ay(t) + b

for a matrix A and a vector b in terms of φ-function.

Edited by EJ

132 SF2524BlockD.Df-4
What is the forward Euler exponential integrator?

Edited by EJ

133 SF2524BlockA.A8solution
For simplicity, assume x ∈ Rn and λ ∈ R. Recall that

r(x) =
xTAx

xTx
= λ.

By Taylor expansion, we have

r(v) = r(x + Δ) = r(x) + r ′ (x)Δ + O( | | Δ | | 2),

where r ′ (x) =
∂r

∂x1
,

∂r

∂x2
…,

∂r

∂xn
.

Note 1. If c ∈ Rn is a constant vector, then

∂

∂x
cTx =

∂

∂x
c1x1 + c2x2 + … + cnxn = c1, c2, …, cn = cT.

Note 2.

∂

∂x
xTx = {Product rule} =

∂

∂x
yTx +

∂

∂x
xTy

y=x
= 2xT,

[ ]
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where we have used 
∂

∂x
yTx = yT and xTy = (xTy)T = yTx from Note 1 for the first and the second

term within the parenthesis, respectively.

Note 3.

∂

∂x
xTAx =

∂

∂y
yTAx +

∂

∂x
xTAy

y=x
= {(xTAy)T = yTATx}

=
∂

∂x
yTAx +

∂

∂x
yTATx

y=x
= xTA + xTAT.

By the quotient rule for differentiation, we have

r ′ (w) =

∂

∂w
wTAw wTw −

∂

∂w
wTw wTAw

(wTw)2
=

{Note 2, 3} =
wT(A + AT)wTw − 2wTwTAw

(wTw)2
.

If w = x where x is an eigenvector with | | x | | = 1, it follows that

r ′ (x) =
xT(A + AT) − 2xTxTAx

(1)2
= xT(A + AT) − 2xTλ =

xTA + (Ax)T − 2λxT = {(Ax)T = λxT} = xTA − λxT = (ATx − λx)T.

Hence, if A = AT (A is symmetric), then Ax = λx = ATx and consequently r ′ (x) = 0 iff ATx = λx,
Q.E.D.

Edited by jr, EJ

134 SF2524BlockA.A37solution
Let A ∈ Rm×m and assume that the eigenvalues of A are distinct in modulus,

| λ1 | > | λ2 | > . . . | λm | .

The eigenvectors x1, . . . , xm then span Rm.

If λ1 and x1 are known and the Power Method is applied to the starting vector q0 = (A − λ1I)q (with
q an arbitrary vector), then

q ( k ) =
Akq ( 0 )

‖Akq ( 0 )‖
=

Ak(A − λ1)q

‖Ak(A − λ1)q‖
=

(Ak+1 − λ1A
k)q

‖(Ak+1 − λ1A
k)q‖

Expressing q in terms of the eigenvector basis we get

q ( k ) =
(Ak+1 − λ1A

k)(a1x1 + . . . + amxm)

‖(Ak+1 − λ1A
k)(a1x1 + . . . + amxm)‖

=
(Ak+1 − λ1A

k)(a1x1 + . . . + amxm)

‖(Ak+1 − λ1A
k)(a1x1 + . . . + amxm)‖

=
a1λ

k+1
1 x1 + . . . amλ

k+1
m xm − (a1λ

k+1
1 x1 + a2λ1λ

k
2x2 + . . . + amλ1λ

k
mxm)

‖a1λ
k+1
1 x1 + . . . amλ

k+1
m xm − (a1λ

k+1
1 x1 + a2λ1λ

k
2x2 + . . . + amλ1λ

k
mxm)‖

=

( ) |
( ) |

( ) ( )



=
a2(λ2 − λ1)λk2x2 + . . . + am(λm − λ1)λkmxm

‖a2(λ2 − λ1)λk2x2 + . . . + am(λm − λ1)λkmxm‖
=

a2λ
k
2

| a2 | | λ2 | k
⋅

(λ2 − λ1)x2 +
a3 ( λ1 −λ3 ) λk3

a2λ
k
2

x3. . . +
am ( λm −λ1 ) λkm

a2λ
k
2

xm

‖(λ2 − λ1)x2 +
a3 ( λ1 −λ3 ) λk3

a2λ
k
2

x3. . . +
am ( λm −λ1 ) λkm

a2λ
k
2

xm‖

As k → ∞, ( |
λj

λ2
| )k → 0 for j > 2 as | λ2 | > | λj |  and thus

q ( k ) →
a2λ

k
2

| a2 | | λ2 | k
⋅

(λ2 − λ1)x2

‖(λ2 − λ1)x2‖
.

Edited by LL

135 SF2524BlockA.A16solution
If λ1 = λ2, |λ1 | ≥ | λ3 | ≥ | λ4 | ≥ ⋯ ≥ | λn|, and the geometric multiplicity of λ1 is 2, then using the
usual procedure: at the iteration k, if we write our starting vector in the basis of the eigenvectors
(assuming A diagonalizable),

v ( 0 ) = α1x1 + α2x2 + ⋯ + αnxn

where x1 and x2 form a basis for the eigenspace corresponding to the eigenvalue λ1. We get that
the iterate v ( k )  has the form

v ( k ) = ckA
kv ( 0 ) = ckA

k(α1x1 + α2x2 + ⋯ + αnxn) =

= ck(α1λ
k
1x1 + α2λ

k
1x2 + α3λ

k
3x3 + ⋯ + αnλ

k
nxn) =

= ckλ
k
1(α1x1 + α2x2) + ck α3

λk3

λk1
x3 + ⋯ + αn

λkn

λk1
xn

from which we get the estimate

‖v ( k ) ± (β1x1 + β2x2)‖ = O
λ3

λ1

k

and because x1 and x2 form a basis for the eigenspace, β1x1 + β2x2 is an eigenvector of λ1, so PM
converges nonetheless.
If the first two eigenvalues have identical module but are not equal (λ2 = − λ1), then there is no
convergence: using the same equations as before, we get

‖v ( k ) ± (β1x1 + ( − 1)kβ2x2)‖ = O
λ3

λ1

k

so the iterate oscillates between two vectors in the span(x1, x2).
If instead the geometric multiplicity of λ1 is 1, then A is not diagonalizable; using the Jordan
decomposition, A = VJV −1, where V is the vector of the generalized eigenvectors and J is a block
diagonal matrix:

J =

J1

J2

⋱
Jm

.

( )

( | | )

( | | )
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In our case

J1 =
λ1 1

0 λ1
.

v ( 0 ) = α1x1 + α2x2 + ⋯ + αnxn

where x1 is an eigenvector corresponding to the eigenvalue λ1, and x2 is not an eigenvector but a
so-called generalized eigenvector, which comes out from V in the Jordan decomposition of A. Let's
consider the simple case

A =
λ 1

0 λ

We get that the iterate has the form

v ( k ) =
Akv ( 0 )

‖Akv ( 0 )‖
=

c1λ
ke1 + c2kλ

ke2 + c2λ
ke2

‖c1λ
ke1 + c2kλ

k−1e2 + c2λ
ke2‖

=

=
λk

|λ|k

c1 + c2

k

λ
e1 + c2e2

‖ c1 + c2

k

λ
e1 + c2e2‖

So for k → ∞ v ( k )  converges in the eigenspace of λ, monotonically or oscillating depending on the
sign of λ. The convergence as we can see is very slow, algebraic instead of geometric.
For the general case the reasoning is absolutely analogous, because what matters is the first block
of the Jordan decomposition, while the others go to zero when divided by λ1 for k → ∞.

Edited by be, FI

136 SF2524BlockA.A23solution
The power method in general converges to the largest eigenvalue (in absolute value) when the
absolute value of the largest eigenvalue and the absolute value of the next largest eigenvalue are
different. This is the case for all α. In a),b),d) the largest eigenvalue is 110 so we will have
convergence to 110. In c) the largest eigenvalue is 200, so we will have convergence to 200.

Edited by CR, EJ

137 SF2524BlockA.A3solution
Let A ∈ Cn×n, (λ, x) an eigenpair of A and μ ∈ C.
To question 1.)
Suppose that A is regular. Therefore every eigenvalue of A is nonzero. Since (λ, x) is an eigenpair,
we have Ax = λx. Thus

x = Ix = A −1Ax = A −1λx.

Multiplying this equation by 
1

λ
 yields A −1x =

1

λ
x. This means that (

1

λ
, x) is an eigenpair of A −1.

To question 2.)

(A − μI)x = Ax − μx = λx − μx = (λ − μ)x

yields that (λ − μ, x) is an eigenpair of A − μI.
To question 3.)
We combine both results from above and suppose that A − μI is regular. Thus

x = Ix = (A − μI) −1(A − μI)x = (A − μI) −1(λ − μ)x.

[ ]

[ ]
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As seen before, multiplying this equation with 
1

λ−μ
, which is possible since λ − μ is not equal to

zero, gives 
1

λ−μ
x = (A − μI) −1x. We have found the eigenpair (

1

λ−μ
, x) of (A − μI) −1.

Edited by st

138 SF2524BlockA.A9solution
We have seen during lectures that the inverse iteration will in general converge to the eigenvector
corresponding to the eigenvalue that is closest to μ, if there is only one which is the closest.

a) μ = 1.2, the closest eigenvalue is 1
b) μ = 100, the closest eigenvalue is 5

Edited by M, EJ

139 SF2524BlockA.A7solution
We can use the convergence result saying that the error of the power estimates decreases of the
order (λ1/λ2)k. The eigenvalues of the matrix are 3, 2, 1 and 0.5, and so λ1, λ2 = 3, 2. Solving
(λ1/λ2)k = 10 −3 for k gives k = 17.0366.

For both μ specified, the closest eigenvalue is 3. Doing the same analysis, replacing λ1, λ2 with
1 / (λ1 − μ), 1 / (λ2 − μ) yields k = 17.0366 for μ = 2.6 and k = 3.1439 for μ = 2.9.

An implementation in matlab for the power iteration with initial guess (0.1, 0.1, 0.1, 0.1) looks like
the following:

    %Power method

    A=[[3,1,0,0],

        [0,2,0,1],

        [0,0,1,0.2],

        [0,0,0,0.5]]

    eig(A)

    vap=transpose([0.1,0.1,0.1,0.1])

    i=0

    while norm(vap-transpose([1,0,0,0]))> 10^-3

        i=i+1

        vap=A*vap/(norm(A*vap))

    end

Running the script stops at i=17.

Edited by C, M, CR, EJ

140 SF2524BlockA.A17solution
It is known that Rayleigh quotient iteration has cubic convergence when the matrix is symmetric
and it has in general quadratic convergence otherwise. Whereas inverse iteration has linear
convergence, assuming the closest and the second closest eigenvalue to μ are distinct and not at
the same distance from μ.
Therefore
1. Rayleigh quotient iteration with symmetric matrix: blue line
2. Inverse iteration: black line
3. Rayleigh quotient iteration with non-symmetric matrix: red line

Edited by M, EJ



141 SF2524BlockA.A1solution
The Rayleigh quotient iteration is a method for large eigenvalue problems. Given an initial
approximation x0 ∈ Rn new approximations x1, x2, … ∈ Rn are computed by first solving the linear
system

zi+1 = (A − r(xi)I)
−1xi

and subsequently normalizing the vector

xi+1 =
zi+1

‖zi+1‖

where r(x) :=
xTAx

xTx
 is the Rayleigh quotient.

Example in MATLAB:

  

  n=100;

  A=sprandn(n,n,0.1);

  x=randn(n,1);

  x=x/norm(x);

  for k=1:10

    p=x'*A*x;

    x=(A-p*speye(n,n))\x;

    x=x/norm(x);

  end

Edited by SJ, EJ, EJ, Anonymous

142 SF2524BlockA.A4solution
What is the result of two steps of Rayleigh quotient iteration applied to the matrix

A =
1 0

0 5

with the starting vector

x0 =
1

√2

1

1
?

Solution:

The Rayleigh quotient iteration is of the form, given x0, then

xi+1 =
(A − μiI)

−1xi

‖(A − μiI)
−1xi‖

where μi = xi ∗ Axi /x
∗
i xi.

EJ's comment: Therefore, μ0 = ?  and x1 = ?

Thus, μ0 = 3 and x1 =
1

√2

− 1

1

[ ]

[ ]

[ ]



Edited by kj, EJ, PM

143 SF2524BlockA.A24solution
If the matrix for which we search eigenpairs A is symmetric, i.e AT = A, then the convergence
towards the true eigen vector xi for the RQI updates vk can be stated in terms
| vk+1 ± xi | = O( | vk ± xi |

p) where p = 3. If the matrix is not symmetric we have the same result but
for p = 2.

Edited by CR

144 SF2524BlockA.A5solution
Since A is symmetric, we may utilize the findings in A8 to conclude that the error in r(v) is given by

error = | r(v) − r(x) | = O( | | Δ | | 2) ≈ 0.22 = 0.04.

Edited by jr, Anonymous

145 SF2524BlockA.A11solution
Consider the matrix A − λjxjx

T
j , by the assumptions made in Trefethen and Bau, we know that the

matrix A has a complete set of orthogonal eigenvectors. If (λi, xi) is another eigenpair of the matrix
and λi ≠ λj, then

(A − λjxjx
T
j )xi = λixi ⟹ Axi = λixi

since the two eigenvectors are perpendicular. Therefore, by applying the iteration on A − λjxjx
T
j , it is

possible to generate a second eigenpair of A.

Edited by Anonymous

146 SF2524BlockA.A37solution
Let A ∈ Rm×m and assume that the eigenvalues of A are distinct in modulus,

| λ1 | > | λ2 | > . . . | λm | .

The eigenvectors x1, . . . , xm then span Rm.

If λ1 and x1 are known and the Power Method is applied to the starting vector q0 = (A − λ1I)q (with
q an arbitrary vector), then

q ( k ) =
Akq ( 0 )

‖Akq ( 0 )‖
=

Ak(A − λ1)q

‖Ak(A − λ1)q‖
=

(Ak+1 − λ1A
k)q

‖(Ak+1 − λ1A
k)q‖

Expressing q in terms of the eigenvector basis we get

q ( k ) =
(Ak+1 − λ1A

k)(a1x1 + . . . + amxm)

‖(Ak+1 − λ1A
k)(a1x1 + . . . + amxm)‖

=
(Ak+1 − λ1A

k)(a1x1 + . . . + amxm)

‖(Ak+1 − λ1A
k)(a1x1 + . . . + amxm)‖

=
a1λ

k+1
1 x1 + . . . amλ

k+1
m xm − (a1λ

k+1
1 x1 + a2λ1λ

k
2x2 + . . . + amλ1λ

k
mxm)

‖a1λ
k+1
1 x1 + . . . amλ

k+1
m xm − (a1λ

k+1
1 x1 + a2λ1λ

k
2x2 + . . . + amλ1λ

k
mxm)‖

=

=
a2(λ2 − λ1)λk2x2 + . . . + am(λm − λ1)λkmxm

‖a2(λ2 − λ1)λk2x2 + . . . + am(λm − λ1)λkmxm‖
=

a2λ
k
2

| a2 | | λ2 | k
⋅

(λ2 − λ1)x2 +
a3 ( λ1 −λ3 ) λk3

a2λ
k
2

x3. . . +
am ( λm −λ1 ) λkm

a2λ
k
2

xm

‖(λ2 − λ1)x2 +
a3 ( λ1 −λ3 ) λk3

a2λ
k
2

x3. . . +
am ( λm −λ1 ) λkm

a2λ
k
2

xm‖



As k → ∞, ( |
λj

λ2
| )k → 0 for j > 2 as | λ2 | > | λj |  and thus

q ( k ) →
a2λ

k
2

| a2 | | λ2 | k
⋅

(λ2 − λ1)x2

‖(λ2 − λ1)x2‖
.

Edited by LL

147 SF2524BlockA.A31solution
Assuming that all assumptions made under theorem 27.1(Trefethen and Bau) hold, we have that

‖v ( k ) − ( ± q1)‖ = O(
λ2

λ1

k

)

This gives us that the error is at most a constant times 
λ2

λ1

k

. If we let ϵ ( k )  represent the error at

kth iteration, we arrive at

logϵ ( k ) ∝ k ⋅ log
λ2

λ1

Thus, by calculating the slope of the error curve (say m), we get | λ2 | = | λ1 | ⋅ 10m. From the graph,
the slope is approximately − 0.6, and therefore, | λ2 | ≈ 1.

Edited by Anonymous

148 SF2524BlockA.A47solution
a) 

∂

∂x
cTx =

∂

∂x
(c1x1 + ⋯ + cnxn = [c1, c2, ⋯, cn] = cT

b)
∂

∂x
xTx = {product rule} =

∂

∂x
yTx +

∂

∂x
xTy

y=x
= {we that (xTyT) = yTx since scalar, and usinga)} = yT + yT y=x = 2xT

Edited by bo

149 SF2524BlockA.A62solution
In order to minimize the two-norm, we can interpret the minimization problem as a linear least
squares problem in one unknown. The solution to linear least squares problems are given by the
normal equations, in our case x = α is the unknown and

Av ≈ αv

(with approximation interpreted in a least squares sense) has the normal equation

vTAv = αvTv.

This implies that

α =
vTAv

vTv
,

which we recognize as the rayleigh quotient.

Edited by JW, EJ

150 SF2524BlockA.A61solution

| |

| |

| |
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Finding the eigenvalue of A ∈ Cn×n is equivalent to solving pA(λ) = det(A − λI) = 0 . pA(λ) is a
polynomial of degree n, it is known that there can not be an explicit formula for findings the roots of
a polynomial of degree larger than 4. Thus the methods must be iterative.

EJ's comment (beyond the scope of the course): The above description is a correct interpretation
of what is written in TB. I think TB's reasoning is somewhat incomplete. Galois theory states that
we cannot find an explicit formula for roots of polynomials of high degree. In the context of Galois
theory "explicit formula" refers to a finite fixed number of operations involving addition, subtraction,
multiplication, division, exponentiation to a (fixed) rational number. This interpretation of "explicit
formula" is not usually what we mean by explicit formula in numerics, where we have a bigger set
of fundamental operations, defined by the IEEE-standard of floating point operations. Moreover,
Galois-theory does not imply that there is no formula which gives a solution up to machine
precision. A recent class of eigenvalue methods (based on numerical quadrature) have in a certain
sense this property. Howeover, I agree with TB in the sense that iterative methods are much more
important for eigenvalue problems than they are for linear systems.

Edited by JW, EJ

151 SF2524BlockA.A15solution
a) This is the single Graham-Schmidt orthogonalization algorithm.
b) Q is already exactly orthogonal. With this algorithm, we add to Q the vector qnew which should
be orthogonal to the space spanned by the columns of Q and also qnew should be normalized.
Hence, Qnew should be an orthogonal matrix as well so that QT

newQnew should be the identity matrix

and thus ‖QT
newQnew − I3 ×3‖ should be zero.

c) The modified Graham-Scmidt algorithm is traditionally seen as less sensitive to rounding errors.

Edited by be

152 SF2524BlockA.A12solution
The modified Gram-Schmidt method looks almost similar to the classical Gram-Schmidt method,
but the classical Gram Schmidt method is sensitive to rounding erros. We compute the
orthonormalized vectors q1, q2, . . . . qk ∈ Rn in order to get Qk = [q1, . . . . qk] and orthogonalize w
against the columns of Qk and obtain h. Then we subtract Qkh from w, but due to rounding errors,
the columns of Qk are not completely orthogonal. So we subtract also the rounding errors.

In the case of Modified Gram-Schmidt we orthogonalize w against q1 to obtain h and subtract
[q1 ∗ h] from w. Then we orthogonalize the new w against q2 and so on, so we orthogonalize on
the new version of w everytime. Than finally w is more orthogonal to Qk than in the CGS method.

Note: the Matlab file is part of the homework, so I don't think it should be given here?

Edited by Anonymous

153 SF2524BlockA.A63solution
Let Q be m by n. Then, orthogonalizing b with the classical GS. requires m flops more than the
modified G.S. Let us compare:

G.S:

   h=Q’*b;            Step 1 

   z=b-Q*h;          Step 2 

   beta=norm(z);  Step 3 

   q=z/beta;          Step 4 

Modified:



  z=b;

  for i=1:n

      h(i)=Q(:,i)’*b;    Step 1

       z=z-h(i)*Q(:,i);  Step 2

   end

   beta=norm(z);       Step 3

   z = z/beta;             Step 4

Step 1 requires the same number of calculations in both algorithms, so does step 3 and 4. Step 2
in G.S. requires m*n multiplications and n*m+m additions, i.e. 2*m*n + m flops. Step 2 in modified
G.S. requires m multiplications and m subtractions for each loop count. This adds up to 2m*n
flops. The difference is thus, n flops.

Edited by JW, Anonymous

154 SF2524BlockA.A13solution
Given a subspace span(q1, …, qm) of which q1, …, qm is an orthonormal basis. Let
Q = [q1, …, qm] ∈ Rn×m . To compute the Rayleigh-Ritz approximation of eigenvalues of A ∈ Rn×n

one computes the matrix H = QTAQ ∈ Rm×m. (This is what one in general uses the Arnoldi method
for.) Then one computes the eigenvalues of H, i.e. one solves the eigenvalue problem

Hz = μz.

These μ are approximations of the eigenvalues of A corresponding to the subspace.

Let Ax = λx and assume that x ∈ span(q1, …, qm), i.e. it holds that x = ∑m
i=1ziqi = Qz. Thus

AQz = λQz

As Q is orthogonal, QTQ = I and thus

QTAQz = λz

Hence for x ∈ span(q1, …, qm) the eigenvalues of H = QTAQ are the same as the eigenvalues of A
that correspond to the subspace. For eigenvectors x with x ≈ x̂ ∈ span(q1, …, qm) one gets a
"good" approximation. ( →  as the quality of the approximation depends on how well
x̂ ∈ span(q1, …, qm) approximates x it is important to choose a "good" subspace span(Q).)

Edited by LL
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Multiplying both sides by QT

m, we get

QT
mAQm = QT

mQm+1H
_ m

= [QT
mQm, QT

mqm+1]H
_ m

.

Since Qm is orthogonal and qm+1 is orthogonal to the span(Qm),

[QT
mQm, QT

mqm+1]H
_ m

= [Im×m, 0m×1]H
_ m

= Hm.

Edited by be

156 SF2524BlockA.A10solution
The Arnoldi factorization is the factorization



AQm = Qm+1H̃m

where QQ ∗ = I and H̃m is the (m + 1) × m upper-left section of the upper Hessenberg matrix H

Edited by bo

157 SF2524BlockA.A20solution
Suppose that An = 0 for every n > k. Then, we have that

Kk = span(b, Ab, …, Ak−1b) = Kk+1 = Kk+2 = … = Kn

for every n > k. Suppose that Qk is the orthogonal matrix generated at the k-th step of the Arnoldi
algorithm. Then, let z = Aqk. By hypothesis, z ∈ Kk so that z ⊥ = 0 and thus hk+1 , k = ‖z ⊥ ‖ = 0.
Hence, using the a posteriori theorem from the lecture notes, we have that

‖Av − μv‖ = | hk+1 , ke
T
kz | = 0

for each Ritz pair Hkz = μz and v = Qkz. Hence, the eigenvalues of Hk are eigenvalues of A.

Edited by be, Be
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The Gram-Schmidt algorithm is numerically unstable which means that the algorithm is more
sensitive to round-off errors. If the algorithm is used on a computer it will the accumulated effects
of rounding errors will be worse for modified Gram-Schmidt. To improve this algorithm it needs to
be modified and therefore we have the Modified Gram-Schmidt and Repeated Gram-Schmidt.

Edited by EJ, An

159 SF2524BlockA.A25solution
We use induction.

If m = 1, it is trivial that span(b) = span(q1).

Inductive step: suppose the Lemma holds for m − 1, that is span(Qm−1) = span(Km−1(A, b)). We
now want to prove it for m.

First notice that
span(Km(A, b)) = span(b, AKm−1(A, b)) = span(b, Aspan(Km−1(A, b)))

by the inductive hypothesis we have
span(b, Aspan(Km−1(A, b))) = span(b, Aspan(Qm−1)) = span(b, AQm−1)

and since Qm and Hm

_

 satisfy the Arnoldi factorization, we get

span(b, AQm−1) = span(b, QmHm

_

)

furthermore, we have
span(b, QmHm

_

) ⊆ span(Qm)

So we have proven that
span(Km(A, b)) ⊆ span(Qm)

We also know that the rank of Km(A, b) is m by assumption and since Qm is orthogonal it also has
rank m. Since the two subspaces have the same dimension, the previous inclusion must be an



equality. Q.E.D.

Edited by M, EJ
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For symmetric matrices, A = AT, the Lanczos algorithm is in exact arithmetic equivalent to the
Arnoldi method.

Consider the Arnoldi relation, AQn = Qn+1H
_ n

, and thus Hn = QT
nAQn. Consider now the tranposed

of H, HT = QT
nA

TQn. Hence for symmetric matrics, A = AT, HT = H. As we know that Hn is by

construction a Hessenberg matrix this means that Hn has to be tridiagonal.

In the Lanczos method this tridiagonality of Hn (which means that when applying the "full" Arnoldi
method many become zero) is used to create an algorithm that requires less operations and
memory than the Arnoldi method. It is obtained by "rearranging" the resulting terms and is thus
equivalent in exact arithmetic.

This was not covered in the lectures but explained in the online video: https://people.kth.se/~eliasj
/lanczos_method_derivation.mp4

Edited by LL, EJ
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For m = 1 the first degree polynomial

p(x) = −
x

2
+

3

2

has value in p(λ1) = p(1) = 1, and value p(λj) = p(3) = 0, j = 2, …, n, so

ε ( 1 )
1 = 0

from which we conclude that at the first step the method finds the eigenvalue exactly.

Edited by FI
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The power method is used to approximate the highest (in absolute sense) eigenvalue. This works
in the following way: We multipy a vector by a matrix, then the contribution of the eigenvector
corresponding to the largest eigenvalue increased more than other eigenvectors. So if we multiply
it many times, then the contribution of the eigenvector shall dominate. Then we can approximate
this eigenvector and with it the eigenvalue.

The Arnoldi method to approximate the most outlying eigenvalue (ie the one on the left) and the
shift invert Arnoldi method is good in approxomating the eigenvalues close to a given shift. So if
you select a good shift, then you can approximate very well the clustered eigenvalues.

Edited by LL, Anonymous
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In the context of Gram-Schmidt procedures.

Not that from Lemma 1.2.2 we have that, qm+1 = z /‖z‖ and z = b − Qh.

Select P as,



I h

0 ‖z‖
.

Obviously P is nonsingular since all the diagonal entries are positive, thus all the eigenvalues are
positive and hence det (P) ≠ 0.

Then W = VP is satisfied with V = Q qm+1  and W = Q b , since

VP = Q qm+1
I h

0 ‖z‖
= Q + 0 Qh + ‖z‖qm+1 = Q Qh + z = Q b = W.

Thus span(W)=span(V).

For the general case: Since P is a nonsingular linear transformation it is bijective and bijections
perserve bases. I will not give the proof of this since I believe it is not in the scope of this course.
Thus span(W)=span(V).

Edited by DE
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The error indicator | | (I − QQ ∗ )xi | |  is the norm of the difference of the eigenvector xi and its
projection on the column space of Q. It can be seen as (the sine of) the "angle" between the Krylov
subspace and the eigenvector xi in a Rn dimensions geometry.

Edited by ML, EJ
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a) The Hessenberg matrix is a tridiagonal matrix

b) The algorithm can be derived from the tridiagonal structure of the hessenberg matrix. The
Gram-Schmidt process can be simplified since we do not need to orthogonalize against all
previous basis vectors.

c) It is designed for symmetric matrices.

Edited by EJ
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The input of the Arnoldi method is a matrix A ∈ Rn×n and a vector b ∈ Rn×1 and the output is a
matrix Qm ∈ Rn×m and Qm+1 = [Qm, qm+1] ∈ Rn×m+1. The columns of Qm+1 is an orthonormal
basis to the Krylov subspace generated by A and b and the Arnoldi factorization holds, namely

AQm = Qm+1Hm

_

where Hm

_

 is a Hessenberg matrix. The eigenvalues of A that are farthest away from the region in

the complex plane where most of A:s eigenvalues are, are approximated by the eigenvalues of the
Hessenberg matrix Hm

_

.

Edited by Anonymous

167 SF2524BlockA.A40solution
An intuitive interpretation of εmi  is as a measure of how "difficult" it is to push down a polynomial in

points λj for all j ≠ i and maintain p(λi) = 1.

[ ]

[ ] [ ]

[ ][ ] [ ] [ ] [ ]



According to Corollary 1.4.3 in the lecture notes,

εmi ≤
ρ

| λi − c |
m−1,

where ρ is the radius, λi the i'th eigenvalue and c the center of the disk.

Examples

εmi ≤
ρ

| λi−c |
m−1 ≈

2

33
m−1,

εmi ≤
ρ

| λi−c |
m−1 ≈

1.8

1.94
m−1.
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168 SF2524BlockA.A41solution
Right multiply by the eigenvector x of Hk:

AQkx = QkHkx = Qk(λx) = λQkx

Now, introduce v = Qkx, so that the above expression becomes

Av = λv

That is, v is an eigenvector to A with eigenvalue λ

Edited by mb

169 SF2524BlockA.A43solution
The start vector is normalized and set as the first column in the Q matrix. That means that it does
not matter if you input b or 2*b, since they are normalized to the same vector. Q and H will
therefore not differ between the function calls.

Edited by ML

170 SF2524BlockA.A49solution
Let U, V ∈ Cn×m be orthonormal bases of the subspace K ⊆ Cn. The solution of question A34
proves that ∃R ∈ Cm×m non-singular such that UR = V. Thus multiplication with the adjoint of U
yields R = U ∗V since U and V are orthonormal bases and therefore also unitary matrices, i.e.
U ∗U = Im and V ∗V = Im. We can conclude that

Im = V ∗V = (UR) ∗UR = R ∗U ∗UR = R ∗R.

Since R is square and regular, the uniqueness of the inverse in GLm(C) yields R ∗ = R −1, which
implies RR ∗ = RR −1 = Im.

Edited by st, EJ
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The power method favors the eigenvalue largest in modulus.

The Arnoldi method favors eigenvalues at the exterior of the spectrum.

Edited by mb
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The left hand side

minz∈ Cm | | u − Qz | | 2

is a linear least squares problem, with known solution given by the projection

z ∗ = (QTQ) −1QTu

which since Q is orthogonal (QTQ = I) implies z ∗ = QTu. Hence,

minz∈ Cm | | u − Qz | | 2 = | | (I − QQT)u | |

In the Arnoldi method, Qm is constructed so that its columns form an orthonormal basis of the
Krylov subspace Km(A, b). Hence, for a given z ∈ Cm, it holds that Qz is a linear combination of the
basis vectors of Km(A, b), so that y = Qz ∈ Km(A, b). Therefore,

minz∈ Cm | | αixi − Qz | | = miny∈Km (A ,b ) | | αixi − y | |

Edited by mb



173 SF2524BlockA.A53solution
Assume that Axi = λixi. Applying shift and invert Arnoldi means applying Arnoldi's method to the
matrix (A − σI) −1 where σ is supposed to lie close to the eigenvalues of interest. The eigenvalues

of (A − σI) −1 are known to be λ((A − σI) −1) =
1

λ (A ) −σ
.

Assume that (A − σI) −1Qm = Qm+1H
_ m

 and consider the convergence indicator ‖(I − QQ ∗ )yi‖

where (A − σI) −1yi =
1

λi−σ
yi.

The first steps of the convergence proof are identical to the one in the lecture notes, with (A − σI) −1

instead of A. For the final step one gets

‖(I − QQ ∗ )αiyi‖ = min
p∈ Pm − 1

‖αiyi − p((A − σI) −1)

n

∑
j=1

αjxj‖ ≤ min

p∈ Pm − 1 ,p (
1

λi− σ
) =1

‖αiyi −

n

∑
j=1

αjp(
1

λj − σ
)xj‖ =

= min

p∈ Pm − 1 ,p (
1

λi− σ
) =1

‖
n

∑
j=1 , j≠ i

αjp(
1

λj − σ
)xj‖ ≤

n

∑
j=1 , j≠ i

| αj | min

p∈ Pm − 1 ,p (
1

λi− σ
) =1

max
j≠ i

| p(
1

λj − σ
) |

Then dividing by | αi |  yields

‖(I − QQ ∗ )yi‖ ≤

n

∑
j=1 , j≠ i

| αj |

| αi |
min

p∈ Pm − 1 ,p (
1

λi− σ
) =1

max
j≠ i

| p(
1

λi − σ
) | = ξiϵ

(m )
i

Now applying the rule of thumb as in the lecture notes one finds that given a disk centered at c ∈ C

that contains all eigenvalues μj =
1

λj−σ
 except for μi, then

ϵ (m )
i ≤ max

i≠ j

|
1

λj−σ
− c | (m−1 )

|
1

λi−σ
− c | (m−1 )

While we observed for the "classical" that it favors "extreme", isolated eigenvalues (which lie far
away from a disk containing all other eigenvalues", with the shift and invert Arnoldi method it is

possible to "select" specific eigenvalues by choosing σ such that 
1

λi−σ
 is "extreme" compared to the

other 
1

λj−σ
 for j ≠ i. Especially for eigenvalues which are not "extreme" to begin with, faster

convergence can thus be achieved by choosing an appropriate σ.

Edited by LL
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The GMRES-iterates are defined as the minimizers:

min
x∈ Kn (A ,b )

‖Ax − b‖2 = ‖Axn − b‖2

They are computed as follows: Suppose Qn and H
_ n

 satisfy the Arnoldi relation and q1 = b /‖b‖.

Then,

min
x∈ Kn (A ,b )

‖Ax − b‖2 = min
z∈ Cn

‖H
_ n

z − ‖b‖e1‖2,

( )

( )



where e1 is the unit vector corresponding to the first component. The approximations xn are
obtained from solving the right hand side and then computing xn = Qnz.

Edited by EJ, An

175 SF2524BlockB.B4solution
This follows directly from the fact that the Krylov subspace at step m is included in the Krylov
subspace at step m + 1.
Let rm be the residual vector at step m, then

‖rm+1‖2 = ‖Axm+1 − b‖2 = min
x∈ Km + 1 (A ,b )

‖Ax − b‖2 ≤

≤ min
x∈ Km (A ,b )

‖Ax − b‖2 = ‖Axm − b‖2 = ‖rm‖2

which means the norm of the residual vector is not increasing.

Edited by M, An

176 SF2524BlockB.B5solution
The solution is sought in Kn(A, b). Therefore xn = q(A)b where q is polynomial of degree n − 1. The
residual:

rn = b − Axn = (I − Aq(A))b = pn(A)b

where pn is a polynomial of degree n for which pn(0) = 1. This space is denoted P0
n.

We now see that the relative residual is:

| | rn | |

| | b | |
≤ inf

pn ∈P0
n

| | pn(A) | | ≤ {if A diagonalizable} ≤ inf
p∈P0

n

| |V | | | |V −1 | | | | p(Λ) | | ≤ | |V | | | |V −1 | | inf
p∈P0

n

max
i

p(λi)

A way to characterise, i.e. bound, this is to find a circle Bρ(c) enclosing all the eigenvalues. Then
the estimate becomes:

| | rn | |

| | b | |
≤ | |V | | | |V −1 | | (

ρ

| c |
)n

Edited by JW
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We know that,

Km(A, b) = span(b, Ab, A2b, …, Am−1b).

Therefore,

Km(V −1AV, b) = span(b, V −1AVb, (V −1AV)2b, …, (V −1AV)m−1b)

= span(b, V −1AVb, V −1A2Vb, …, V −1Am−1Vb).

Similarly,

V −1Km(A, Vb) = V −1(span(Vb, AVb, A2Vb, …, Am−1Vb))

= span(b, V −1AVb, V −1A2Vb, …, V −1Am−1Vb).

Edited by Anonymous

178 SF2524BlockB.B10solution



Since b is set to be the first column of orthogonal matrix Qk = (b, q1, . . . , qk−1), it follows
Q ∗

k b = (b ∗Qk)
∗ = (b ∗b, b ∗q1, . . . , b ∗qk−1) ∗ = ( | b | , 0, . . . , 0) ∗ = ( | b | e ∗

1 ) ∗ = | b | e1,

Edited by CR

179 SF2524BlockB.B11solution
The polynomial p(D) of a diagonal matrix is again a diagonal matrix D ′ . We want to prove that the
maximum x, call it x ′ , in the definition of the norm fulfills x ′ = (0, . . . , 1, . . . , 0) where the 1 is found
at position i. We can write the norm for a Diagonal matrix as (x ′ 2

1 d2
1 + . . . + x ′ 2

n d2
n)

1 / 2. For any x of

norm 1, it holds that
(x2

1d
2
1 + . . . + x2

nd
2
n) ≤ x2

1max(d2
i ) + . . . + x2

nmax(d2
i ) = max(d2

i )

since (x2
1 + . . . + x2

n) = 1. Thus x ′ = (0, . . . , 1, . . . , 0) with 1 in position i indeed.

Edited by CR
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We observe that the eigenvalues of A1 fit inside a circle in the complex plane centered at c(A1) = 5

and with radius r(A1) = 1. Similarly, the eigenvalues of A2 fit inside a circle in the complex plane
centered at c(A2) = 8 with radius r(A2) = r(A1) = 1.

We consider the polynomial

q(z) :=
(c − z)n

cn
,

known as the Zarantonello polynomial. It is the minimizing polynomial over a disk in the sense that

min
p∈P0

n

max
z∈ C̄ ( c , r )

| p(z) | = max
z∈ C̄ ( c , r )

| q(z) | =
r

| c |

n
,

where C̄(c, r) is the disc with center at c and radius r, Pn = {polynomials of degree at most n} and
P0
n = {p ∈ Pn : p(0) = 1}. Since q ∈ P0

n, we have

min
p∈P0

n

( max
i

( | p(λi(Ak)) | )) ≤ max
i

| q(λi(Ak)) | = max
i

| c(Ak) − λi(Ak) | n

| c(Ak) | n
≤

r(Ak)
n

| c(Ak) | n
,

where k = 1, 2. It follows that

min
p∈P0

n

( max
i

( | p(λi(A1)) | )) ≤
1n

5n
=

1

5n

and

min
p∈P0

n

( max
i

( | p(λi(A2)) | )) ≤
1n

8n
=

1

8n

which are the sought bounds. Since all eigenvalues are strictly in the right half-plane for both
matrices, they are invertible and hence diagonalizable and the bounds may be utilized together
with the main convergence theorem of GMRES to give a bound for the relative residual error.

Edited by jr

181 SF2524BlockB.B13solution
Since A is symmetric positive definite,

( )



A = UΛU ∗

for some U orthogonal and Λ diagonal with real positive elements on its diagonal.

Hence, the general bound

‖rn‖

‖b‖
≤ κ(U) min

pn ∈P0
n

max
λ∈ spec (A )

| pn(λ)|

simplifies as

‖rn‖

‖b‖
≤ min

pn ∈P0
n

max
λ∈ spec (A )

pn(λ)

since κ(U) = 1.

Following the same reasoning as for the CG convergence, we can also find

‖rn‖

‖b‖
≤ 2

√κ(A) + 1

√κ(A) − 1

n
.

Edited by Be, LL
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Let m be the size of A. Hence, A has at most m eigenvalues. We denote {λi}

m
i=1 the eigenvalues of

A. Since A is assumed invertible, the λi's must be non-zero.

It is always possible to find a polynomial pm of degree m such that pm(λi) = 0 for every 1 ≤ i ≤ m

and pm(0) = 1. Hence, the algorithm will terminate after at most m steps.

Edited by Be
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The approximation xn of the solution of Ax = b after n steps is defined as minimizer of the residual
norm, i.e. xn such that

‖Axn − b‖2 = min
x∈ Kn (A ,b )

‖Ax − b‖2

similarly, the approximation zn of the solution of Bz = b is such that

‖Bzn − b‖2 = min
z∈ Kn (A ,b )

‖Bz − b‖2

If A = − B we have that

‖Axn − b‖2 = min
x∈ Kn (A ,b )

‖Ax − b‖2 = min
x∈ Kn (A ,b )

‖B( − x) − b‖2 =

min
−x∈ Kn (A ,b )

‖B( − x) − b‖2 = min
z∈ Kn (A ,b )

‖Bz − b‖2 = ‖Bzn − b‖2

which implies xn = − zn.
Furthermore, we have the same relationship between the exact solution x ∗  of Ax = b and the exact
solution z ∗  of Bz = b, that is x ∗ = − z ∗  .
Therefore, the approximation error is the same for both problems:

‖xn − x ∗‖ = ‖ − (xn − x ∗ )‖ = ‖zn − z ∗‖

( )



Edited by M, An
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Consider the min-max bound for GMRES,

‖Axn − b‖

‖b‖
≤ ‖V‖‖V −1‖ min

p∈P0
n

max
i=1 , . . . ,m

| p(λi) |

Assume that A has only 10 different eigenvalues. After 10 iterations p ∈ P100, i.e. it has 10 roots
and thus minp∈P0

n
max i=1 , . . . ,m | p(λi) | = 0 as one can "put" a root at every λi, specifically

p(z) = Π10
i=1(1 −

x

λi
).

Then ‖Ax10 − b‖ ≤ 0 and hence Ax10 = b, the exact solution is returned after 10 iterations.

Edited by LL
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The computation time per iteration increases with iterations in GMRES since the number of vectors
in Q increases, leading to a more and more computationally heavy Gram-Schmidt
orthogonalization. This means that running many iterations of GMRES can be infeasible.

Edited by ML
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It holds that

K(A, b) = {α0b + α1Ab + …αnA
n−1b : α0, α1, …, αn ∈ C} = {q(A)b : q ∈ Pn−1}

where Pn−1 is the set of polynomials of degree less than or equal to n − 1. Hence,

{b − Ax : x ∈ K(A, b)} = {b − Aq(A)b : q ∈ Pn−1}

Now, note that polynomials of the form p(z) = 1 − zq(z) for q(z) ∈ Pn−1 have the properties

p(0) = 1

and

p(z) ∈ Pn

i.e.

p(z) ∈ P0
n

It now holds that b − Aq(A)b = p(A)b for some p ∈ P0
n. In conclusion,

x ∈ K(A, b) ⇔ b − Ax = p(A)b

for some p ∈ P0
n

Edited by mb

187 SF2524BlockB.B37solution
Set equality between two sets A and B means that each point in A is found in B, and each point in
B is found in A. In the context of the exercise, a point corresponds to to a residual vector. The
equality of the sets describe that there are two ways of representing residual vectors, one indexed
by vectors x of a Krylov space, the other indexed by polynomials of a certain type.

Edited by CR



188 SF2524BlockB.B64solution
To a)
To use Corollary 2.1.5 (Single localization disk) we draw a disk D(c = 3 + i, ρ = 2) which contains
all eigenvalues of A. Thus we obtain a bound

min
p∈P0

n

max
i=1 , … ,m

| p(λi) | ≤
ρn

| c | n
=

2

√10

n
.

To b)
This also gives a convergence bound for GMRES, since we can estimate the residual norm in
each iteration step n with

‖Axn − b‖

‖b‖
≤ ‖V‖‖V −1‖

2

√10

n
.

Edited by st

189 SF2524BlockB.B65solution
| |Qx | | 2 = √(Qx)T(Qx) = √xTQTQx = xTInx = √xTx = | | x | | 2

Edited by JW

190 SF2524BlockB.B2solution
Both the GMRES and the CG method generate approximate solutions xn to the linear system

Ax = b

after n iterations of the methods. Both the solutions x (CG )
n  and x (GMRES )

n  are calculated to minimize

the residual

r = Axn − b

but since the residual is measured in different norms for the two different methods, the
approximate solutions vectors xCGn  and xGMRES

n  wont be equal to each other. They will however lie in

the same Krylov subspace Kn(A, b).

Edited by Anonymous

191 SF2524BlockB.B3solution
The Conjugate Gradient (CG) iterates for a matrix A are defined as the minimizers of ‖Ax − b‖A − 1,
over the nth Krylov Subspace. That is, the CG iterates x1, x2, …xn satisfy

min
x∈ Kn (A ,b )

‖Ax − b‖A − 1 = ‖Axn − b‖A − 1, n = 1, 2, …

Equivalently,

min
x∈ Kn (A ,b )

‖x − x ∗‖A = ‖xn − x ∗‖A, n = 1, 2, …

where x ∗ = A −1b.

Edited by EJ, An

192 SF2524BlockB.B44solution
If A is symmetric and positive definite then the convergence is monotonic in the error measured in

( )

( )

√



the ‖ ⋅ ‖A-norm. First we note that xn is the minimiser in Kn, consider Kn ∋ x = xn + Δx which
implies that e = x ∗ − x = en + Δx

| | en | | 2
A = (en + Δx)TA(en + Δx) = eTnAen + ΔxTAΔx + 2eTnAΔx

2eTnAΔx = 2rTnΔx = 0. (Why?, see thm. 38.1)

Since A is positive definite Δx ⋅ (AΔx) is positive. Thus xn is the a minimiser in Kn. Now since
Kn ⊂ Kn+1 it follows that | | en | | A ≥ | | en+1 | | A. ( if Kn = Kn+1 then | | en | | A = | | en+1 | | A

Edited by JW, EJ

193 SF2524BlockB.B21solution
As in CG, assume that A is symmetric positive definite and hence invertible. The residual norm
with respect to A −1 squared is in CG defined as,

‖Ax − b‖2
A − 1 = (Ax − b)TA −1(Ax − b) = (Ax − b)T(x − A −1b) = A −1b = x ∗ = A(x − A −1b T(x − x ∗ ) = (x − x ∗ )TA(x − x ∗ ) = ‖x − x ∗‖2

A.

By taking the square root,

‖Ax − b‖A − 1 = ‖x − x ∗‖A.

Thus the residual norm with respect to A −1 equals the error norm with respect to A.

Edited by Anonymous

194 SF2524BlockB.B22solution
Theorem 38.5 in T&B states that if we have a symmetric positive definite matrix problem Ax = b,
where A has 2-norm condition number κ. Then the A-norms of the errors satisfy

| | en | | A

| | e0 | | A
≤ 2

√κ + 1

√κ − 1

n
+

√κ + 1

√κ − 1

−n −1

≤ 2
√κ − 1

√κ + 1

n
.

By Taylor expansion, we have

√κ − 1

√κ + 1
= 1 −

2

√κ
+ O

1

κ
.

Combining these two results, we get

| | en | | A

| | e0 | | A
≤ 2 1 −

2

√κ
+ O

1

κ

n
.

We want to determine the numbers of iterations n required to reach a specific accuracy ε. For large
κ, we may neglect the remainder in the Taylor expansion and we obtain

2 1 −
2

√κ

n
≈ ε ⇒ n ≈

ln(ε / 2)

ln 1 −
2

√κ

≈
√κ

2
| ln(ε / 2) |

where in the last approximate equality, we have once again made a Taylor expansion, which is
valid for large κ.

Edited by LL, jr

195 SF2524BlockB.B23solution

[ ] ( )

[( ) ( ) ] ( )

( )

( ( ))

( )
( )



The algorithm for CG includes the following steps:

(1) αn =
rTn − 1rn − 1

pTn − 1Apn − 1

(2) xn = xn−1 + αnpn−1

(3) rn = rn−1 − αApn−1

(4) βn =
rTnrn

rTn − 1rn − 1

(5) p = rn + βnpn−1

Now, lets define transformation matrices with dimension nxn:

T :=

1 − 1

1 − 1

⋱ ⋱
1 − 1

1

B :=

1 −β1

1 −β2

⋱ ⋱
1 −βn−1

1

D :=

α1

⋱
αn

With these matrices it is possible to express the three expressions between X, R and P.

From (2) it is possible to write:

xn = xn−1 + αnpn−1

⟺ xn − xn−1 = αnpn−1

It is here possible to write that, for i = 1, . . , n, xn − xn−1 = XT and for αnpn−1 = PD which gives

xn − xn−1 = αnpn−1

⟺ XT = PD

That is the first expression.
From (5) it is possible to write:

pn = rn + βnpn−1

⟺ pn − βnpn−1 = rn

It is here possible to write that, for i = 1, . . , n, pn − βnpn−1 = PB and it is known that βn = B which
gives

[ ]

[ ]
[ ]



pn − βnpn−1 = rn

⟺ PB = R

This is the second expression.
From (3) it is possible to write:

rn = rn−1 − αApn−1

⟺ rn − rn−1 = αApn−1

It is here possible to write that, for i = 1, . . , n, αApn−1 = APD and it is possible to express
rn − rn−1 = RTT − rne

T
n which gives

rn − rn−1 = αApn−1

⟺ APD = RTT − rne
T
n

This is the third expression.

Edited by An

196 SF2524BlockB.B19solution
In CG, xn is defined as the minimizer to

min
x∈ Kn (A ,b )

‖Ax − b‖A − 1 = ‖Axn − b‖A − 1, n = 1, 2, …,

and thus rn satisfy the minimization property that rTnQ = 0, where rn = b − Axn and Q is a matrix

such that span(Q) = Kn(A, b). Since span(Q) = Kn(A, b) = span(r0, …, rn−1) it also holds that
rTnri = 0 for i < n.

For the second part. Note that in CG, rn+1 = rn − αn+1Apn and rTnpi = 0 for i < n since all old search

directions lie in Kn(A, b), i.e. span(Q) = Kn(A, b) = span(p0, …, pn−1).

By premultiplying the residual equation by pTi , i < n

pTi rn+1 = pTi rn − αn+1p
T
i Apn, i < n, 0 = 0 − αn+1p

T
i Apn, i < n, 0 = pTi Apn, i < n.

Thus the search directions p0, …, pn are A-orthogonal.

Edited by EJ, An

197 SF2524BlockB.B24solution
Short-term recurrence methods only need to save a few vectors instead of big sequences of
vectors. The CG method is a short-term method since only three vectors are stored at each
iteration, in contrast to for example GMRES where the matrix Qn increases in every iteration. The
GMRES is therefore not a short-term recurrence method.

The short-term recurrence methods are preferable since they require less computer memory.

Edited by Anonymous

198 SF2524BlockB.B25solution
a) Because the norm has to be a positive value (thus zTAz has to be positive), and this is not
generally the case if A is not SPD.

b) Since the inverse of a positive definite matrix is positive definite.



Edited by CR, BO

199 SF2524BlockB.B26solution
Let A ∈ Cn×n be normal. Therefore, the spectral theorem gives σi = | λi | ∀i = 1, …, n, where
σ1 ≥ … ≥ σn are the singular values of A and | λ1 | ≥ … ≥ | λn |  are its eigenvalues. We conclude

κ(A) = | |A | | ⋅ | |A −1 | | = σmax(A)σmax(A −1) =
σmax(A)

σmin(A)
=

| λmax(A) |

| λmin(A) |
.

Edited by st

200 SF2524BlockB.B27solution
AT = A, then

σ(A) = √λ(ATA) = √λ(A2) = √λ(A)2 = | λ(A) |

where we have used λ(A2) = λ(A)2. This can be proved by considering that A is diagonalizable,
A = V −1DV with D having the same eigenvalues of A. Therefore A2 = V −1D2V has the same
eigenvalues of D2 which are the squared eigenvalues of A.

Edited by M

201 SF2524BlockB.B28solution
In exact arithmetic we expect zero. We know from theory of CG and GMRES that

For the Arnoldi method we know that the column span of the Q-matrix is the Krylov subspace
KN(A, b).
For CG we know that the column span of x1, …, xN is the Krylov subspace KN(A, b) (See
theorem about CG in lecture notes).

We therefore know that there exists a matrix Z ∈ RN×N such that

Q = XZ.

That is

QZ −1 = X.

By multiplication from the left with QT and using that it is an orthogonal matrix we have

QTX = QTQZ −1 = Z −1

which is computed in the first formula in the source code

   Z=inv(Q'*X).

The final formula

   norm(Q(:,1:N)-X*Z)

confirms the result.

Edited by EJ

202 SF2524BlockB.B43solution
As mentioned as a hint, the solution can be found with Hx + c. The following MATLAB code solves
this equation with CG (H is SPD):



  H = [5 2 3 2;

  2 3 1 1;

  3 1 4 -1;

  2 1 -1 7];

  c = [-2 8 -2 4]'

  x = cg(H, -c, -c)

  norm(H*x+c)

The norm has to be zero, it was 2.0515e-14 for me.

  x =

    3.0000

   -4.0000

   -1.0000

   -1.0000

Edited by BO

203 SF2524BlockB.B47solution
EJ's comment: The (nice) solution below is based on the CG-algorithm, another solution is based

on the definition of the CG-iterates as minimizers

Use that xn+1 − xn = αn+1pn, i.e. xn = xn+1 − αn+1pn:

‖en‖A = ‖x ∗ − xn‖A = ‖x ∗ − xn+1 + αn+1pn‖A = ‖en+1 + αn+1pn‖A =

(en+1 + αn+1pn)
TA(en+1 + αn+1pn) = eTn+1Aen+1 + 2eTn+1Aαn+1pn + (αn+1pn)

TAαn+1pn =

‖en+1‖A + 2eTn+1Aαn+1pn + ‖αn+1pn‖A

Now consider 2αn+1e
T
n+1Apn:

eTn+1Apn = (x ∗ − xn+1)TApn = rTn+1pn

Use that

rn+1 = b − Axn+1 = b − A(xn + αn+1pn) = rn − αn+1Apn ,

thus

rTn+1pn = (rn − αn+1Apn)
Tpn = rTnpn − αn+1p

T
nAp = rTnpn − rTnrn

using that αn+1 =
rTnrn

pTnApn
. Now use that pn = rn + βnpn−1, hence

rTnpn − rTnrn = rTn(rn + βnpn−1) − rTnrn = βnr
T
npn−1.

Summarizing,

rTn+1pn = βnr
T
npn−1

Using this recursively we obtain that

rTn+1pn = βn ⋅ …β1r
T
1p0



Using the initial conditions

rT1p0 = rT1r0 = (r0 − α1Ar0)Tr0 = rT0r0 −
rT0r0

rT0Ar0

rT0Ar0 = 0

Hence,

rTn+1pn = 0

and thus

‖en‖A = ‖en+1‖A + ‖αn+1pn‖A

Edited by LL, EJ

204 SF2524BlockB.B48solution
The matrices are defined a

R := [r0, . . . , rn − 1] P := [p0, . . . , pn−1]

The pi vectors denote the correction direction at each iteration,

xi − xi−1 = αipi−1

where αi is a scaling factor (the "step size").

The vectors ri denote the residual at each iteration,

ri := b − Axi = b − A(xi−1 + αipi−1) = ri−1 − αiApi−1

Once the residual vector for iteration i is obtained it can be used to update

pi = βipi−1 + ri .

From this follows the relation between the matrices P and R, as pi − βipi−1 = ri,

P

1 −βi

⋱ ⋱
⋱ −βn−1

1

= R

As stated in Lemma 2.2.4 in the lecture notes, P and B span the same subspace, specifically
Kn(A, b), if αi, βi for i = i, . . . , n are non-zero.

Edited by LL

205 SF2524BlockB.B59solution
a) Different Fomulation of the CG algorithm

b) Comparison will be done to the CG formulation in algorithm 2

ν and ν +  are used for storing the products rT0 ⋅ r0 and rTn−1 ⋅ rn−1 to avoid double calculation of

rT ⋅ r

q stores the result of the matrix-vector-multiplication A ⋅ pn−1 to calculate this only once per
iteration step

[ ]



α, x, r, β respresents the same as in the lecture notes

k is a loop counter

Edited by CN

206 SF2524BlockB.B62solution
Solution idea: Use that the min-max bound of CG implies that it should require at most as many
iterations as the number of (different) eigenvalues. In this case we have two different eigenvalues,
so at most two iterations.

Edited by EJ

207 SF2524BlockB.B30solution
CG stands for Conjugate Gradient while CGN stands for CG Applied to the Normal Equation. The
relationship between these two iterative methods is that both are using the same algorithm to solve
a problem, but applied to different matrices. CGN is CG applied to ATAx = ATb.

Edited by An

208 SF2524BlockB.B32solution
The bound for CGN is given by

| |Ax − b | | 2

| | b | | 2
≤ 2

κ − 1

κ + 1

n

which could be compared to the analogous bound for CG

| |Ax − b | | A − 1

| | b | | A − 1
≤ 2

√κ − 1

√κ + 1

n

Apart from the square-root of κ, the bounds are also measured in different norms. In brief, CGN is
generally worse at the iterations grows as O(κ), in contrast to O(√κ) for CG.

Edited by mb

209 SF2524BlockB.B31solution
From lecture 8:

From definition we have that

min
x∈ Kn (B , c )

| |Bx − c | | B − 1 = | |Bxn − c | | B − 1

Reformulating the r.h.s of the above equation gives

| |Bx − c | | 2
B − 1 = | | x − x ∗ | | B = (x − x ∗ )TB(x − x ∗ )T = (x − x ∗ )TATA(x − x ∗ )T = (Ax − b)(Ax − b)T = | |Ax − b | | 2

2

Such that the expression may be expanded as

min
x∈ Kn (B , c )

| |Bx − c | | B − 1 = | |Bxn − c | | B − 1 = min
x∈ Kn (B , c )

| |Ax − b | | 2

Thus, the iterates are minimized over Kn(B, c) instead of Kn(A, b) as for GMRES

Edited by bo

210 SF2524BlockB.B33solution
The convergence of CGN depends on the singular values of the matrix, while the convergence of
GMRES depends on the eigenvalues of the matrix. Hence, in a situation where the eigenvalues
are more ill-conditioned than the singular values, CGN is favored over GMRES. For example, a

( )

( )



well-conditioned matrix (i.e. the singular values are well-behaved) with eigenvalues close to the
origin would favor the CGN method.

Edited by mb

211 SF2524BlockB.B39solution



a) Applying a left preconditioner means we multiply from the left so the linear system becomes

Ax = b

M −1Ax = M −1b

LLTAx = LLTb

Moreover, L is invertible and (by problem formulation) x = Ly such that we have

LTALy = LTb

which proves the statement.
b) Since A is symmetric positive definite we have by definition that

zTAz > 0

for any z ≠ 0. If we set z = Lw, we have

wTLTALw = (Lw)TALw = zTAz > 0

where we used that A is positive definite in the last step. Hence LTAL is symmetric positive definite.
c) The recurrence relation for the transformed problem is

αn =
rTn−1rn−1

pTn−1L
TALpn−1

xn = xn−1 + αnpn−1

rn = rn−1 − αnL
TALpn−1

βn =
rTnrn

rTn−1rn−1

We define (slightly different from suggested in exercise)

p̂n = Lpn

x̂n = Lxn

r̂n = L −Trn.

Moreover, we can simplify the formulas if we introduce the additional vector

zn = M −1r̂n

The recursion formulas are changed as follows:

αn =
r̂Tn−1LL

Tr̂n−1

p̂n−1Ap̂n−1
=

r̂Tn−1M
−1r̂n−1

p̂n−1Ap̂n−1
=

r̂Tnzn

p̂n−1Ap̂n−1

r̂n = L −Trn = L −Trn−1 + αnL
−TLTALpn−1 = r̂n−1 − αnAp̂n

x̂n = Lxn = x̂n−1 + αp̂n−1

p̂n = Lpn = Lrn + βnLpn−1 = LLTr̂n + βnp̂n−1 = M −1r̂n + βnp̂n−1 = zn + βnp̂n−1.

These formulas form an algorithm which is identical to what is called preconditioned conjugate
gradient method on wikipedia.

Edited by EJ



212 SF2524BlockB.B57solution
A) ♣ : Ax − b ♠ : x ∈ Kn(A, b) ♢ : 2 ♡ : 2

B) ♣ : Ax − b ♠ : x ∈ Kn(A, b) ♢ :A −1 ♡ :A −1

C) Two alternative solutions with B = ATA and c = ATb

Alt 1.: ♣ : Bx − c ♠ : x ∈ Kn(B, c) ♢ :B −1 ♡ :B −1

Alt 2.: ♣ : Ax − b ♠ : x ∈ Kn(B, c) ♢ : 2 ♡ : 2

Edited by bo, EJ

213 SF2524BlockB.B55solution
As I is SPD this is a norm and it is defined as | | x | | I = √xT ⋅ I ⋅ x

but as

xT ⋅ I = xT

we find

| | x | | I = √xT ⋅ I ⋅ x = √xTx

which is the definition of the euclidean norm

| | x | | 2 = √xTx

Edited by CN

214 SF2524BlockB.B58solution
a) To carry out the proof for vk+1 we do induction and use steps 2,5 and 8 and 10 and the
initialization in step 1: Initialization step we set v1 = (b − Ax0) /‖b − Ax0‖. Use induction hypothesis,
vk ∈ Kk(A, v1). From step 2 we find that ṽk+1 ∈ Kk+1(A, v1). In the operations 5,8,10 we let vk+1 be
linear combination of ṽk+1, vk such that vk+1 ∈ Kk+1(A, v1). The proof is analogous but with a
transpose wk+1 ∈ Kk+1(AT, v1).

b) If A is symmetric wk = vk for all k and the algorithm reduces to Lanczos.

c) Vk = [v1, …, vk], Wk = [w1, …, wk]. The matrix T
_ k

 is given by

T
_ k

=

α1 β1

γ1 ⋱ ⋱

⋱ ⋱ βk−1

⋱ αk

γk

Edited by EJ

215 SF2524BlockC.C1solution
Suppose that A is a matrix with dimension mxm. Then it is possible to express A as A = QR where

[ ]



R is an upper triangular matrix such that R ∈ Cmxm and Q is an unitary matrix such that Q ∈ Cmxm.

The basic QR-algorithm is given by:

Let A0 = A and iterate:

Compute the QR-factorization of Ak = QR.
Set Ak+1 = RQ.

This is done until the matrix A is an upper triangular matrix.

Observe that k is the iteration count

Edited by EJ, An

216 SF2524BlockC.Ca-11solution
Equality is shown by separation into two parts. Assuming that (λ, v) is an eigenpair A and showing
a corresponding eigenpair of B, and then showing the converse.

1) Suppose (λ, v) is an eigenpair of A. We have

λv = Av

If we define w as w = V −1v we have

λV −1w = AVw

By multiplication of V −1 from the left we obtain

λw = V −1AVw = Bw

which shows that (λ, w) is an eigenpair of B.

2) Suppose (λ, w) is an eigenpair of B. We have

λw = Bw

If we define v = Vw we have

λVv = BV −1v.

By multiplication of V from the left we obtain

λv = VBV −1v = Av

which shows that (λ, v) is an eigenpair of A.

Edited by EJ

217 SF2524BlockC.C2solution
The reason why the Schur form is used instead of the Jordan form is because the Schur form is
numerically stable while the Jordan form is often not numerically stable.

Edited by Anonymous

218 SF2524BlockC.C3solution
The iterates of the QR method are matrices Ak = RkQk, where Q ∗

k Qk = QkQ
∗
k = I. We shall show

that all Ak have the same eigenvalues.

Proof alternative 1. Note that Ak+1 = QT
kAkQk for an orthogonal matrix Qk. This is a similarity

transformation and similarity transformations do not change the eigenvalues (as we proved in



SF2524BlockC.Ca-11).

Proof alternative 2. Let λ be an eigenvalue of A, and let A0 = A. Then

0 = det (A − Iλ) = det (Q0A1Q
∗
0 − λ(Q0Q

∗
0 )) = det (Q0(A1 − λI)Q ∗

0 ) = det (Q0) det (A1 − λI) det (Q ∗
0 ) =

= det (Q0) det (A1 − λI) det (Q ∗
0 ) = det (Q ∗

0 ) = det (Q −1
0 ) =

1

det (Q0)
=

= det (Q0) det (A1 − λI)
1

det (Q0)
= det (A1 − λI).

Since all Qk are orthogonal, it follows, by induction, that all Ak have the same eigenvalues as A,
Q.E.D.

Edited by jr, EJ

219 SF2524BlockC.C4solution
The difference between the Schur factorization and QR-factorization is that QR-factorization can
be computed with a finite number of operations while Schur factorization will directly give us the
eigenvalues. In equations, the QR-factorization is factorization of A as

A = QR

whereas the Schur factorization is the factorization

A = QTRQ

where in both cases Q is an orthogonal matrix and R an upper triangular matrix.

EJ's addition: In this course we learn procedures to compute the Schur factorization but not the
QR-factorization.

Edited by An, EJ

220 SF2524BlockC.C5solution
Consider the 1 × 1 matrix A = [1]. Then the following are QR factorizations of A:

A = [1][1] = [ − 1][ − 1] .

Edited by Be

221 SF2524BlockC.C6solution
Let v = [0, u]T, where 0 ∈ Rp. Then, we have

vvT =
0

u
0T uT =

0 0

0 uuT
.

Therefore,

I − 2vvT =
I 0

0 I − 2uuT
= P.

By construction, | | v | | = 1 and thus, P is a householder reflector.

Edited by Anonymous

222 SF2524BlockC.Ca-7solution
The Householder reflectors Qi must be applied to the matrix A first multiplied from the left in its

{ }

[ ][ ] [ ]

[ ]



Hermitian conjugate form Q ⋆
i  and then multiplied from the right:

A → Q ⋆
1 A → Q ⋆

1 AQ1

If with the first reflector Q ⋆
1  the whole first column were changed to a multiple of e1, that means that

all the rows of A a1, a2. …, am are used in a linear combination to introduce zeros in the first
elements of a2. …, am. Consequently, when Q1 is applied, all the columns of A a1, a2. …, am are
used in a linear combination, so the first columns goes from being a multiple of e1 to a linear
combination of the other columns, losing the zeros it had gained in the preceding step.
This does not happen if we make the matrix Hessenberg because by not taking into consideration
the first row with the first reflector, the first column will not be considered at the second
multiplication, and the zeros will be preserved.

Edited by FI
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a)

A1 =

3.5 − 2.3 − 4.63

− 2.06 2.15 5.28

0 3.32 3.53

b)

A100 =

5.37 − 2.028 6.33

0 1 − 1.33

0 0 − 3.72

Edited by EJ
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Pu = u − 2u(u ∗u) = u − 2‖u‖2u = u − 2u = − u

P ∗ = (I − 2uu ∗ ) ∗ = I − 2(uu ∗ ) ∗ = I − 2(u ∗ ) ∗u ∗ = I − 2uu ∗ = P

Edited by FI

225 SF2524BlockC.Ca-12solution
We know that the Givens Rotation of a vector x is given by,

[ ]

[ ]



G(i, j, c, s)x =

x1

⋮
xi−1

cxi − sxj

xi+1

⋮
xj−1

sxi + cxj

xj+1

⋮
xn

Therefore,

G(i, j, c, s)Tx =

x1

⋮
xi−1

cxi + sxj

xi+1

⋮
xj−1

− sxi + cxj

xj+1

⋮
xn

The Givens Rotation of a vector therefore only changes two elements of the vector. In the given
problem, notice that the 4th and 5th elements of the vector appear to be changed. Therefore,

G(4, 5, c, s)T[ − 1, 2, 1, 4, 3, 0]T = [ − 1, 2, 1, c(4) + s(3), − s(4) + c(3), 0]T

Solving for − s(4) + c(3) = 0 (given) and c2 + s2 = 1 (condition for Givens Rotator), we get that c =
4

5

and s =
3

5
. Therefore, the Givens Rotator is G(4, 5,

4

5
,

3

5
), and the element ⋆  is c(4) + s(3) = 5.

Edited by An, EJ
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First note that we know from theorem in PDF lecture notes that the QR-factorization of a
Hessenberg matrix has a particular structure such that it can be expressed with Givens rotators

H = QR = G1G2⋯Gn−1R

where Gi are Givens rotators. More precisely,

[ ]
[ ]



Gi = G(i, i + 1, ci, si)

for some values ci, si, and G(i, i + 1, ⋅ , ⋅ ) is the Givens rotator acting on row and column i and
i + 1

One step of basic QR is therefore,

RQ = RG1⋯Gn−1

We note that the structure of the first product becomes

RG1 =

× × × ×

× × ×

× ×

×

× ×

× ×

1

1

=

× × × ×

× × × ×

× ×

×

Similarly,

RG1G2 =

× × × ×

× × × ×

× ×

×

1

× ×

× ×

1

=

× × × ×

× × × ×

× × ×

×

By a more formal reasoning (with induction) one can show that

RG1⋯Gn−1 =

× × × ×

× × × ×

× × ×

× ×

which is a Hessenberg matrix. Q.E.D.

Edited by EJ
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    m = 5;

    % Create a Hessenberg matrix A

    A = randn(m);

    A = triu(A,-1); 

    for i = 1:m-1

        r = norm(A(i:i+1,i));

        c = A(i,i)/r;

        s = A(i+1,i)/r;

        G = givens(i,i+1,c,s,m);

        A = G'*A;

    end

with the Givens function

[ ][ ] [ ]

[ ][ ] [ ]

[ ]



    function G = givens(i,j,c,s,n)

        G = eye(n);

        G(i,i) = c;

        G(i,j) = -s;

        G(j,i) = s;

        G(j,j) = c;

    end

Edited by Be
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First, it holds that

RQ = QTAQ

and if A is symmetric, it holds that

(QTAQ)T = QTATQ = QTAQ

so that RQ is symmetric.

Edited by mb
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There are several downsides of the QR method mentioned. These are two of them: It takes quite a
lot of iterations before convergence is reached and the second one is that the computation of one
step is expensive.

Improvements that are mentioned are Shifted QR method and the two-phase approach. The
shifted QR method is best used to reduce the number of iterations and so the convergence rate.
This is, because the convergence rate depends on the ratio between 2 eigenvalues and this ratio
is less when you subtract the shift from both eigenvalues and divide the two numbers then. The
two-phase approach reduces the computation time of one step, because it never explicitly forms
the matrix, only the parameters needed.

Edited by Anonymous
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This was covered in a lecture.





Edited by EJ



231 SF2524BlockC.Cb-3solution
If we perform a shift with λ = 0, we get back the original QR-method. This is seen instantly from
looking at the definition of shifted QR in the lecture notes

Edited by CR
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Edited by EJ
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Since convergence is governed by the quantity

max
i=1 , … ,m−1

| λi |

| λi+1 |

fast convergence requires the eigenvalues to be far apart.

a) Hence, an example of a bad collection of eigenvalues could for example be

λ1 = 1.95, λ2 = 2, λ3 = 2.05.

Corresponding matlab simulation

  >> A=[0 1 0; 0 0 1; 1599/200, -4799/400, 6]

     A=

         0    1.0000         0

         0         0    1.0000

    7.9950  -11.9975    6.0000

  >> eig(A)

  ans =

    1.9500

    2.0000

    2.0500

  >> errvec=[];

  >> for k=1:1000; [Q,R]=qr(A); A=R*Q; errvec=[errvec;norm(tril(A,-1))]; 

end 

  >> semilogy(errvec);

b) A more well posed problem could have eigenvalues



λ1 = 2, λ2 = 8, λ3 = 20

  >> A=[0 1 0; 0 0 1; 210, -2016, 210]

  A =

           0           1           0

           0           0           1

         3200       -2016         210

  >> eig(A)

  ans =

    200.0000

      2.0000

      8.0000

Edited by mb, EJ
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Similarity transformations with an orthogonal matrix preserve symmetry. Let AT = A and B = QTAQ

where Q is an orthogonal matrix. Then

BT = (QTAQ)T = QTATQ = QTAQ = B

.

In the QR method we have Ak = QkRk, Ak+1 = RkQk = QT
kAkQk with QTQ = I. Hence if A0 = A = AT,

then Ak = AT
k, the QR method preserves symmetry.

The − λI and + λI in the shifted QR method do not influence the symmetry property of A. If A = AT

then (A − λI)T = A − λI. Thus following the argument for the "normal" QR method above, RQ in the
shifted QR will be a symmetric matrix and hence also RQ + λI.

Edited by LL
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We know that the convergence of the basic QR method is governed by the quantity



β = max
i=1 , … ,m−1

| λi |

| λi+1 |

, given the eigenvalues are ordered as | λi | < | λi+1 | . By considering that an error of 10 −15 is what
is practically achievable, we can see that the expected number of iterations is given by ϵk = βk.
Therefore,

10 −15 = βk ⟹ − 15 = klog(3.95 /4) ⟹ k ≈ 2750

Edited by Anonymous
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Let the Taylor series for f : C → C be convergent for the expansion point μ ∈ C, i.e.

f(z) =

∞

∑
k=0

fk(μ)

k !
(z − μ)k.

Let A be a matrix. The Taylor definition of the matrix function associated with f(z) (with expansion
point μ ∈ C) is then given by

f(A) =

∞

∑
k=0

fk(μ)

k !
(A − Iμ)k.

Edited by jr
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Suppose A ∈ Cn×n and let

A = X diag(J1, …, Jq)X
−1,

be the Jordan canonical form with

Ji =

λi 1

⋱ ⋱
⋱ 1

λi

∈ Cni×ni.

The JCF-definition of the matrix function f(A) is then given by

f(A) := X diag(F1, …, Fq)X
−1,

where

Fi = f(Ji) =

f(λi)
f ′ ( λi )

1 !
…

f ( ni− 1 ) ( λi )

(ni−1 ) !

⋱ ⋱ ⋮

⋱
f ′ ( λi )

1 !

f(λi)

∈ Cni×ni.

Edited by Anonymous
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[ ]

[ ]



Let A ∈ Cn×n. We use the Schur factorization A = Q ⋆TQ , where Q is unitary and T is upper
triangular, to obtain

exp(A) = Q ⋆ exp(T)Q.

The Schur factorization is a similarity transformation of A to T triangular, such that the eigenvalues
λ1, …, λm of A are located on the diagonal of T. Thus exp(T) has the diagonal values
exp(λ1), …, exp(λm). Furthermore, the determinant of a unitary matrix Q fulfills | det(Q) | = 1 and the
determinant of a triangular matrix equals the product of its diagonal entries such that

det(exp(A)) = det(Q ⋆ ) ⋅ det(exp(T)) ⋅ det(Q) = det(exp(T)) = exp(λ1) ⋅ … ⋅ exp(λm) = exp(λ1 + … + λm) = exp(tr(A)).

Edited by st
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Suppose A is

a) symmetric, then f(A) = [f(A)]T.
Jordan canonical form of a symmetric matrix: Let A = XΛX −1, then
AT = (XΛX −1)T = (X −1)TΛXT = XΛX −1 = A where X is a unitary matrix, XTX = I. Thus from the
Jordan form definition we get

[f(A)]T = [Xf(Λ)X −1]T = (X −1)Tf(Λ)XT = Xf(Λ)X −1 = f(A)

b) triangular, f(A) is also triangular
This is e.g. shown in the derivation of the Schur-Parlett method, see Thm 4.2.1, or problem Db-1
[2]

c) hessenberg, then f(A) is not hessenberg in general.

Consider a simple counter-example, f(A) = A2 and A =

1 2 3

3 1 2

0 3 1

. Then A2 =

7 13 10

6 13 13

9 6 7

 which

is not a Hessenberg marix.

d) anti-symmetric AT = − A, then f(A)T ≠ − f(A) in general.

Consider a simple counter-example, f(A) = A2 and A =

0 1 2 3

− 1 0 3 1

− 2 − 3 0 2

− 3 − 1 − 2 0

. Then

A2 =

− 14 − 9 − 3 5

− 9 − 11 − 4 3

− 3 − 4 − 17 − 9

5 3 − 9 − 14

 which is not anti-symmetric. For this example f(A)T = f(A), but that

is not true in general.

e) diagonal, then f(A) also is diagonal
This follows trivially from Taylor/Jordan from definition.

f) orthogonal, then f(A) is not in generally orthogonal

Example: consider Q =

0 1 0

1 0 0

0 0 1

. Then Q ′ ∗ Q = Q ∗ Q = I, but f(Q) = Q2 + Q is not an

orthogonal matrix, (Q2 + Q) ′ ∗ (Q2 + Q) = Q4 + Q ′Q + Q2Q + Q ′Q2 = 2 ∗ I + Q + Q ′ ≠ I

( ) ( )

( )
( )

( )
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p is the characteristic polynomial of the matrix A so it can be written as

p(λ) =

q

∏
1

(λ − λi)
ni

where λi, ni are the eigenvalues with their multiplicities.
From this expression of p it is clear that p(λi) = 0, p ′ (λi) = 0, …, pni−1(λi) = 0

Let A = XJX −1 be the Jordan decomposition of the matrix A. By JCF-definition of matrix functions,
p(A) = Xp(J)X −1, where p(J) = diag(p(J1), …, p(Jq)).
Note that p(Ji) = 0 since p(λi) = 0, p ′ (λi) = 0, …, pni−1(λi) = 0. So p(J) is the zero matrix and
consequently

p(A) = 0

Edited by M
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For this matrix Aε, if a polynomial p interpolates a function f in the eigenvalues, then is it valid

p(Aε) = p(Xdiag(λ, λ + ε)X −1) = Xdiag(p(λ), p(λ + ε))X −1 = Xdiag(f(λ), f(λ + ε))X −1 = f(Xdiag(λ, λ + ε)X −1) = f(Aε)

A first degree polynomial interpolating f(λ), f(λ + ε) is

p(z) = f(λ) −
f(λ + ε) − f(λ)

ε
λ +

z

ε
(f(λ + ε) − f(λ))

Then we can calculate f(Aε) = p(Aε), so the limit is

lim
ε→0

f(Aε) = lim
ε→0

p(Aε) = (f(λ) − λf ′(λ))I + f ′(λ)A0 =
f(λ) f ′(λ)

0 f(λ)

And

f(A0) = f
λ 1

0 λ
=

f(λ) f ′(λ)

0 f(λ)

because A0 is a Jordan block. Hence,

lim
ε→0

f(Aε) = f(A0)

so we have continuity of the function for this matrix.

Edited by FI
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Suppose f is analytic inside and on a simple closed piecewise-smooth curve Γ, which encloses the
eigenvalues of A once counter-clockwise. The Cauchy integral definition of matrix functions is then
given by

f(A) :=
1

2iπ
∮Γf(z)(zI − A) −1dz.

Edited by Anonymous
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Let f(A) =

1

2πi
∮Γf(z)(Iz − A) −1dz and f(B) =

1

2πi
∮Γf(y)(Iy − B) −1dy. Then

f(A)f(B) =
1

2πi
∮Γf(z)(Iz − A) −1dz

1

2πi
∮Γf(y)(Iy − A) −1dy = −

1

4π2
∮Γf(z)(Iz − A) −1∮Γf(y)(Iy − B) −1dydz

= ∮Γ∮Γf(z)f(y)(Iz − A) −1(Iy − B) −1dydz = ∮Γ∮Γf(z)f(y)((Iz − A)(Iy − B)) −1dydz

= ∮Γ∮Γf(z)f(y)((Izy − Ay − Bz + AB)) −1dydz

If AB = BA, then

∮Γ∮Γf(z)f(y)((Izy − Ay − Bz + AB)) −1dydz = ∮Γ∮Γf(z)f(y)(Izy − Bz − Ay + BA) −1dydz

= ∮Γ∮Γf(z)f(y)((Iy − B)(Iz − A)) −1dydz = ∮Γ∮Γf(y)f(z)(Iy − B) −1(Iz − A) −1dydz

= ∮Γf(y)(Iy − B) −1∮Γf(z)(Iz − A) −1dzdy = ∮Γf(y)(Iy − B) −1dy∮Γf(z)(Iz − A) −1dz = f(B)f(A)

Edited by LL
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For simplicity, suppose A is diagonalizable: A = VDV −1.

y ″ + VDV −1y = 0

set u = V −1, then this becomes:

u ″ + Du = 0

This is a non-coupled equation in the components of u, with solution:

u1 = c1e
i√( λ1 ) x + c2e

− i√( λ1 ) x = c1
1cos(√(λ1)x) + c1

2sin(√(λ1)x)

Now we change coordinates back to y:

y(t) = Vcos(√(D)x)c1 + Vsin(√(D)x)

The 1st initial condition yields c1 = V −1y0, then set c2 = V −1c:

y = cos(√(A))y0 + sin(√(A))c

Now the second initial condition yields:

y = cos(√(A))y0 + √(A) −1sin(√(A))y ′
0

Edited by JW
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The definition is valid for matrix A if:

f(z) is analytic in B̄(μ, r)

and

| |A − μI | |

r
< 1

Edited by JW
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A =
1 1 /√(2)

0 1 /√(2)

2 0

0 1

1 − 1

0 √(2)

Thus

exp(A) =
1 1 /√(2)

0 1 /√(2)

e2 0

0 e

1 − 1

0 √(2)

Edited by JW
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We have the Taylor-definition (4.1.1 LN), the Jordan definition (4.1.2 LN) and the Caucy Integral
Definition (4.1.3 LN).

Benefit Taylor: It is the most intuitive approach. We want the definitions to agree with matrix
multiplication and addition so we define a matrix function in terms of a matrix polynomial
corresponding to the taylor series for the considered function. Consequence: Hard to know how
many terms is needed for a specific convergence. Not very general in the sense it requires
convergent Taylor series.

Benefit Jordan: This a more general definition, as it does not require all derivatives and
convergence of the taylor series. It also permits a simple approach to exact computation.
Consequence: Not very intuitive, and requires the Jordan decomposition to be computed.

Benefit Cauchy: Allows for application of Krylov methods, which can be very effective.
Consequence: Need to compute eigenvalues to be sure we encircle them with our chosen contour.

Edited by CR
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We use the Jordan decomposition of A and B

A = XAJAX
−1
A B = XBJBX

−1
B

Then the Jordan decomposition of our block matrix is

A 0

0 B
=

XA 0

0 XB

JA 0

0 JB

XA 0

0 XB

−1

Now use the JCF-definition of matrix functions

f
A 0

0 B
=

XA 0

0 XB
f

JA 0

0 JB

XA 0

0 XB

−1

=
XA 0

0 XB

f(JA) 0

0 f(JB)

XA 0

0 XB

−1

=

=
XAf(JA)X −1

A 0

0 XBf(JB)X −1
B

=
f(A) 0

0 f(B)

Edited by M
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Let T be a triangular matrix with distinct eigenvalues and let

[ ][ ][ ]

[ ][ ][ ]

( ) ( )( )( )

(( )) ( ) (( ))( ) ( )( )( )

( ) ( )



f(T) =

f11 f12 f13

f21 f22 f13

f31 f32 f33

.

a) Give the values for f11, f21, f31, f22, f32, f33 in term of the entries of T
Consider the Taylor definition of a matrix function:

f(A) =

∞

∑
i=0

f ( i ) (μ)

i !
(A − μI)i

A and thus A − μI are triangular matrices, and so are all their powers. Thus f(A) is a sum of
(scaled) triangular matrices and therefore also triangular, thus f21 = f31 = f32 = 0.

Furthermore, the diagonal entries of the triangular matrix powers are the powers of the entries of
the original matrix

((A − μI)i)jj = (Ajj − μ)i

. Hence

(f(A))jj = (

∞

∑
i=0

f ( i ) (μ)

i !
(A − μI)i)jj =

∞

∑
i=0

f ( i ) (μ)

i !
(A − μI)ijj =

∞

∑
i=0

f ( i ) (μ)

i !
(Ajj − μ)i = f(Ajj)

and for the example f11 = f(T11), f22 = f(T22), f33 = f(T33), i.e. we have

f(T) =

f(T11) f12 f13

0 f(T22) f13

0 0 f(T33)

.

b) Derive an explicit formula for f12 involving only elements of T and the values computed in
(a).

All matrix function definitions satisfy

Tf(T) = f(T)T

T and f(T) commute.

Tf(T) − f(T)T = 0

t11f11 t11f12 + t12f22 ⋆

0 t22f22 ⋆

0 0 ⋆

−

f11t11 f11t12 + f12t22 ⋆

0 f22t22 ⋆

0 0 ⋆

= 0

t11f12 + t12f22 − f11t12 − f12t22 = 0

f12(t11 − t22) = (f11 − f22)t12

f12 = t12

f(T11) − f(T22)

T11 − T22

Edited by LL
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Theorem 3.2.1 gives the formula

fij =
s

tjj − tii
,

where

s = tij(fjj − fii) +

j−1

∑
k= i+1

fiktkj − tikfkj.

The non-zero elements of F and T are denoted by +  for already computed and ◻ for unknowns.

In the first figure all elements of F which are required in the formula above to compute fij are
marked, i.e. fkj, fik for k = i + 1, …, j − 1 as well as fii and fjj.

In the second figure all elements of T which are required in the formula above to compute fij are
marked, i.e. tik, tkj for k = i + 1, …, j − 1 as well as tij, tii and tjj.

It is notable that the formula (or rather the algorithm, we can define with it) computes F recursively
subdiagonal-wise. It starts at the first upper subdiagonal (since we know the diagonal of F),
calculates it element-wise downwards and continues with the first element of the next upper
subdiagonal. We will finally end up, computing the top right element of F by using the other
elements in its first row and its last column.

Edited by st
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The Schur-Parlett method computes f(A) for a given matrix function f. Using the Schur factorization
A = Q ⋆TQ, where Q is orthogonal and T is upper triangular, and the fact that the theory for matrix
functions agrees with similarity transformations, we obtain

f(A) = Q ⋆ f(T)Q.

Thus we compute Q, Q ⋆ , f(T) and plug them into this formula, instead of directly approaching f(A).
The matrix Q stems from the Schur factorization and Theorem 3.2.1 in the lecture notes provides
an algorithm to obtain f(T) based on its triangular form.

Edited by st, An
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If the eigenvalues are very close, we will end up with numerical cancellation effects in the
algorithm, resulting in numerical instability. This happens in the line reading fij = s / (tjj − tii) in the
algorithm. We may resolve this by using a blocks in the Schur form.

Example. If we apply the Schur-Parlett method to the matrix

A =
1 2

0 1 + t

with the matrix exponential we get

exp(A) =
e1 2

e1 + t−e1

t

0 e1 + t

[ ]

[ ]



The "problem" with this expression is that the term 
e1 + t−e1

t
 will suffer from numerical cancellation

when t is small (for the same reason that finite difference approximation is inaccurate for small
steplengths). For illustration purposes we can now for this specific example reformulate the
expression such that we avoid cancellation:

exp(A) =
e1 4e1 + t / 2sinh(t / 2) / t

0 e1 + t .

The MATLAB-code below shows that Schur-Parlett is inaccurate (due to round-off errors) when the
eigenvalues are close, which corresponds to small t.

     >> A=@(t) [1 2 ; 0 1+t];

     >> expm_SP=@(t) [exp(1), 2*(exp(1+t)-exp(1))/t; 0 exp(1+t)];

     >> expm_exact=@(t) [exp(1),4*exp(1+t/2)*sinh(t/2)/t ; 0 exp(1+t)];

     >> norm(expm_SP(0.1)-expm_exact(0.1)) 

     ans =

          0

     >>  norm(expm_SP(0.0001)-expm_exact(0.0001))

     ans =

         5.1363e-12

     >>  norm(expm_SP(1e-6)-expm_exact(1e-6))    

     ans =

          1.2278e-09

     >>  norm(expm_SP(1e-9)-expm_exact(1e-9))

     ans =

           4.6001e-07

    >> norm(expm_SP(eps)-expm_exact(eps))

    ans = 

           1.4366

Edited by CR, EJ
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Let

A =
1 α

0 2
.

The eigenvalues of A are λ1 = 1 and λ2 = 2. Let

p(z) = exp(1) + (exp(2) − exp(1))(z − 1) .

Hence, p interpolates exp at z = λ1 and z = λ2. We have thus that

exp(A) = p(A) = exp(1)
1 0

0 1
+ (exp(2) − exp(1))

0 α

0 1
=

exp(1) α(exp(2) − exp(1))

0 exp(2)
.

Edited by Be
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a) The identity does not hold in general. We can for instance take

[ ]

[ ]

[ ] [ ] [ ]



    >> A=-[1 2; 3 4]; 

    >> B=-[1 3; 3 4];

    >> expm(A)*expm(B)

    ans =

        2.4086   -1.4881

       -1.6521    1.0207

    >> expm(A+B)      

    ans =

        2.5706   -1.3903

       -1.6683    0.9023

It does however hold if the matrices commute: AB = BA. So if we take A = I we get equality:

    >> expm(A)*expm(B)   

    ans =

       4.6231   -2.8524

      -2.8524    1.7707

    >> expm(A+B)      

    ans =

       4.6231   -2.8524

      -2.8524    1.7707

b) From the basic properties of matrix functions we know that if f(z) = g(h(z)), then

f(A) = g(h(A)).

If we select f(z) = exp(z) = exp(z / 2)exp(z / 2) we can decompose it in a trivial way by setting
h(z) = exp(z / 2) and g(x) = x ∗ x. Hence,

exp(A) = f(A) = g(h(A)) = exp(A / 2)exp(A / 2).
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255 SF2524BlockD.Dc-5solution
So we truncate the series for eA / 16 = I + A / 16 + A2/36 + . . .

Then we note that eA = (eA / 16)24
. That is, we need to square it 4 times. Therefore we arrive at:

   6.86790  -5.59880  -0.68577

  -3.73966   5.94995   4.74273

   4.91020  -5.10415  -0.48180
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256 SF2524BlockD.Dd-2solution
Can be directly verified with matrix-matrix multiplication

    >> A=[1 1 1 1 ; 0 -1 -2 -3 ; 0 0 1 3; 0 0 0 -1];

    >> A*A

    ans =

      1     0     0     0

      0     1     0     0

      0     0     1     0

      0     0     0     1
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257 SF2524BlockD.Dd-1solution
The Denman-Beavers iteration is an iterative method for the matrix square root.

It is defined by the iteration

Yk+1 =
1

2
(Xk + Y −1

k )

Xk+1 =
1

2
(X −1

k + Yk)

In exact arithmetic it is equivalent with Newton-SQRT. It has very different properties in finite
arithmetic. It is in generally more numerically stable than Newton-SQRT.
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258 SF2524BlockD.De-1solution
Note first that the scalar sign function can be expressed as

sign(x) =
| x |

x
=

√x2

x

Hence, a natural generalization to matrices is given by

sign(A) = A −1√A2
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259 SF2524BlockD.De-2solution
The matrix sign function has been proven to be quadratically convergent. It is given by the iteration

Sk+1 =
1

2
(Sk + S −1

k )
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260 SF2524BlockD.De-3solution
We first note that if we define the sign as

s(z) = √z2/ z

the derivative is

s ′ (z) = 1 /√z2 − √z2/ z2 = 0.

By induction one can show that s ( k ) (z) = 0.

Therefore the Jordan definition becomes

sign(A) = Vdiag(s(λ1), …, s(λn))V
−1

The diagonal matrix has elements ± 1.
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The Krylov approximation of f(A)b is

f(A)b ≈ Qmf(Hm)e1‖b‖,



where Qm and H
_ m

 correspond to an Arnoldi factorization

AQm = Qm+1H
_ m

where Qm+1 = [Qm, qm+1] ∈ Rn× (m+1 )  is orthogonal and H
_ m

∈ R (m+1 ) ×m is upper Hessenberg

and Hm ∈ Rm×m is the upper submatrix of H
_ m

. Moreover, the starting vector of the Arnoldi

factorization is q1 = b /‖b‖.
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The φ function is a function defined by

φ(x) :=

exp ( x ) −1

x
x ≠ 0

1 x = 0

It is an entire function (analytic everywhere) since the special case x = 0 corresponds to to analytic
continuation at a removable pole. We have

lim
x→0

φ(x) = 1.
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263 SF2524BlockD.Df-3solution
The ODE

y ′ (t) = Ay(t) + b

with initial condition y(0) = y0 has solution

y(t) = y0 + tφ(tA)g1(y0)

where g1(t) = Ay(t) + b and φ(z) =
ez −1

z
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264 SF2524BlockD.Df-4solution
If you have a differential equation of the following form: y ′ (t) = − Ay(t) + N(t, y) and y(0) = y0.

Then we can approximate the solution with the Forward Euler Exponential integrator:

yn+1 = e −Ahyn + A −1(1 − e −Ah)N(tn, y(tn)) with h the timestep. (h = tn+1 − tn).

Edited by Anonymous

Page last modified on December 17, 2016, at 07:18 PM

{


