
PAUL TOWNEND
ASSOCIATE PROFESSOR, UMEÅ

Lot of topics at a fairly
high level

Basic Cloud terminology,
what are data centers

HDFS (distributed storage)

Hadoop MR (distributed
batch processing)

Apache Spark
(distributed in-memory

processing)

Apache Storm
(stream processing)

Edge, Fog, Serverless

Orchestration
Containers and

Kubernetes

Learn how to use the
Ericsson Research

Data Center

Cloud Economics
Keynote talk from

Google
Assignment etc.

Clouds need to be highly elastic and scalable

Dynamic allocation of resources

This helps us to quickly (and automatically) scale services to meet dynamic workloads

The solution to this has been virtualisation. But how do we manage virtual resources?

Rapid deployment of applications

Why?

“Cloud orchestration consists in coordinating, at the software and hardware layer, the deployment of a set of

virtualized services in order to fulfil operational and quality objectives of end users and Cloud providers”

A. Tosatto, P. Ruiu and A. Attanasio, "Container-Based Orchestration in Cloud: State of the Art and Challenges”,9th International Conference on Complex, Intelligent, and Software Intensive Systems, 2015

Resource allocation

Fulfil SLAs + enforce limits

Resource optimisation

Maximise host resources

Performance

Minimise overhead

Security

Minimise exposure

Supervision

Monitoring + auto restart

Portability

Isolation + heterogeneity

Persistency / FT

Same or different host

Efficiency

Minimise interference etc

Scheduler

Orchestration is a broad term that refers to

container scheduling,

cluster management,

and possibly the provisioning of additional hosts.

J. Ellingwood, “The Docker Ecosystem: Scheduling and Orchestration”, https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-scheduling-and-orchestration

Physical server

Host operating system (if Type 2 Hypervisor)

Hypervisor

App

Guest OS

App

Guest OS

App

Guest OS

Physical server

Host operating system

Container engine (Docker, etc.)

App App App

Container 1 Container 2 Container 3

VM 1 VM 2 VM 3

“Heavy”

Slow to create

Slow to migrate

Typically long lived and multi-function

“Light”

Fast to create

Do not have migration

Typically short lived and single function

A container is a standard unit of software that packages up code and all its

dependencies so the application runs quickly and reliably from one

computing environment to another

A container is an isolated, lightweight silo for running an application on the

host operating system

Containers don’t exist

They are built on multiple kernel features

Namespaces CGroups

Chroot Security policies (SELinux, AppArmor, etc.) Modification of kernel

Provide per-process isolation of OS resources.

There are seven namespaces, covering different

resources

pid, net, ipc, mnt, uts, user, cgroup

A kernel feature that isolates resource usage,

providing resource management and

accounting. This controls:

Memory, CPU, Block I/O

Intel Corporation, "Container and Kernel-Based Virtual Machine (KVM) Virtualization for Network Function Virtualization (NFV)", builders.intel.com, Santa Clara, CA, 2015

Conflicting definitions and terminology

We will use

Container runtime

Container engine

Container orchestrator

“A container engine is a piece of software that accepts user requests,
including command line options, pulls images, and from the end

user’s perspective, runs the container”

Responsibilities

Interface / API (for users and orchestrators)

Images (instructions for creating + pulling from registry server)

Container mount point

Configuration

Calling the Container runtime

A container runtime [is] a lower level component typically used in a Container
Engine but can also be used by hand for testing

Provides higher-level abstraction for creating and running single or multiple containers within single host

Responsibilities

Configuration / specification of containers

Setting up Cgroups

Setting up Linux namespaces

Setting up Chroot

Setting up SELinux Policy

Setting up AppArmor rules etc.

Alternatives

Unmodified kernel

Libcontainer

LXC

Modified kernel

OpenVZ

Linux-VServer

When at rest, a container is a file (or set of
files) that is saved on disk

This is the container image
or container repository (when collected)

When you start a container, the files are
unpacked and sent to the Linux kernel

Remember, this is the job of the
container engine

The kernel API call typically initiates extra
isolation and mounts a copy of the files

that were in the container image

When running, containers are a standard
linux process

There are several competing Container
Image formats, but industry moving

forward with a standard
The Open Container Initiative (aka OCI)

The scope of OCI includes:

The format of the Container Image
How Container Engines turn an image into a container (i.e. a running process)

A container engine that

enables using OCI (Open

Container Initiative)

compatible runtimes.

“Lightweight alternative to

docker” being developed

by Red Hat, Intel, SUSE,

Hyper, IBM, etc.

4) Containers

1) Please start
container

2) Get container runtime
3) Launch and monitor

the runtime

Container repository / repositories

Container orchestration platforms can be broadly defined as a system that provides an enterprise-level
framework for integrating and managing containers at scale

A. Khan, "Key Characteristics of a Container Orchestration Platform to Enable a Modern Application," in IEEE Cloud Computing, vol. 4, no. 5, September/October 2017

Capabilities include

Cluster state management and scheduling

High availability and fault-tolerance

Security

Networking

Service discovery

Monitoring and governance

Facilitate continuous deployment

Containers can run on multiple virtualised or physical instances - the cluster needs to be kept stable

Flexible scheduling of tasks across
a cluster, making backups,

garbage collection, file
consolidation, index rebuilds.

Also, control mechanisms for
algorithms (binning, affinity, etc.)

Reliable state management and
repartitioning of data/resources

across the cluster

Informing dependent systems of
changes, and throttling system

tasks/changes

High availability requires the container platform ensure agreed QoS

Elimination of single points of
failure (adding redundancy)

Reliable crossover
(continue operating even if a

component fails)

Detect failures as they occur,
and ensure graceful

degradation of QoS until failure
is resolved

Load balancing is often effective to optimise resource use. Using multiple components (containers) with load
balancing may increase reliability and availability through redundancy.

A container orchestrator needs to ensure integrity of deployed services and prevent/ detect intrusions

Container image “sanity”

Trusting images is a
critical concern.

Best practice: ensure
images are signed and
originate in a trusted

repository

Isolation

A container with root
kernel access and see and
access other containers.

Best practice: segment
traffic on the network
using a service mesh.

Access-control

Platforms should provide
both coarse and fine-

grained access.

The policy definition
point should be a

standard identity and
access solution.

Run-time container
defence and profiling

Containers could go
rogue or be

misconfigured and use
significant resources.

This will unbalance the
cluster.

Orchestration platforms must provide efficient networking at scale

Network isolation is key for
container security – but how to

balance with network
efficiency?

Containers must be allocated
ports on the host IP – there is
overhead in managing these

ports, especially at scale

Dynamic port allocation is a
solution, but introduces

challenges such as service
discovery and managing

container level ports.

To communicate with a container, the network location needs to be known (IP + port)

Containers have dynamically
assigned network locations.

These also change due to auto-
scaling, failures, etc.

How do we discover locations?

A service registry is used. It
contains the network locations

of service instances.

There should be multiple
registries, using a replication

protocol for consistency.

Examples of service registries:

Netflix Eureka

Etcd

Apache Zookeeper

Two types of service discovery: client-based and server-based

Client-based

Client is responsible for
determining locations and load

balancing across them

Server-based

The client makes a request to a
service via a load balancer.

The load balancer queries the
service registry.

Client-based discovery lets the
client make intelligent,

application-specific load
balancing decisions.

Server-based results in loose
coupling – clients do not need

to write their own
discovery/balancing.

Process by which code changes are automatically built, tested and prepared/deployed for production

Containers make continuous
deployment easier

Gets rid of “works on my
computer” syndrome

CDD pipeline can be
automated

Tools such as Jenkins for
pipeline management and

deployment

Container security is critical.

Testing should include
security tests as defined by

appropriate standards.

Monitoring (logs, traceroutes, network performance etc.) is very important in Container environments

Two places where
monitoring is required

Physical infrastructure

Container activity

Infrastructure level
monitoring

Monitor network, security,
CPU, memory usage, disk IO,

etc.

Container level monitoring

White box tracing of
requests, logging events,
monitoring performance

Container orchestrators are crucial for
deploying, managing, and monitoring

container systems

Container engines deploy container images,
running container runtimes

Container orchestrators manage the runtimes
and the live system as a whole

By far the leading container orchestration platform in the world

Portable

Extensible

Open-Source

Huge ecosystem

KubeCon 2020

18,700 attendees

7,800 companies

208 media

(this photo is not
from 2020!)

A pod is the smallest unit of computing you
can create and manage in k8s

A group of one or more containers with
shared storage and network resource, plus

a specification for how to run them.

The shared context of a pod is a set of Linux namespaces, cgroups, etc.

Single container pods

These are the most common pod. K8s manages
pods not containers, so consider as a wrapper

Pods with multiple containers working together

Encapsulate an application composed of
multiple co-located and tightly coupled

containers. These form a single unit of service.

API
Kubernetes

Control
Plane

WorkerK

WorkerK

WorkerK

Deployment

Pod

ContainerImage1

ContainerImage2

Replicas=3

Pod

ContainerImage4

ContainerImage5

Replicas=2

Application.yaml

Deployments within Kubernetes are declarative

Control plane

Components that runs the controller processes:

Node controller: Responsible for noticing and
responding when nodes go down

Job controller: Watches for job objects and creates
Pods to run them

Endpoints controller: Joins services and pods

Service account and Token controllers: Creates default
accounts, API access tokens, etc.

Workers

Provides the k8s runtime environment

Kubelet
An agent that makes sure containers are running in a
Pod. Takes PodSpecs and ensures the containers
described are running and healthy.

Kube-proxy
A network proxy maintaining network rules. Uses OS
packet filtering if there is one, otherwise forwards
traffic itself.

Cloud
controller
manager
(optional)

Controller
manager

API server

Etcd
Scheduler

Cloud controller manager

API server

Etcd

Scheduler

Controller manager

API Server

Exposes the k8s API – front end of the control
plane. Validates and configures data for

objects, including pods, services, etc.

Etcd

Consistent and highly-available key/value store.
This is used as backing store for all cluster data.

Cloud Control Manager

Links your cluster to your cloud provider’s API.
If you’re running on-prem, this won’t be used.

You can run multiple instances.

Control Manager

Runs all the controllers; node, job, endpoints,
service account and token controllers.

Cloud
controller
manager
(optional)

Controller
manager

API server

Etcd
Scheduler

In production, the control plane
usually runs across multiple

machines.

Nodes are run on multiple
machines for fault-tolerance

and availability
(and load balancing)

Many add-ons are possible

Client

Application1

Primary DB

Application2

Secondary DB

Load Balancer

Read

Write

Replicate

Client

Application1

Primary DB

Application2

Secondary DB2

Load Balancer

Replicate

Applicationn

Secondary DBn

RISE SICS, NORTHERN SWEDEN

IEEE
Scale Award 2017

Building 2000+ Node Container
Facility

Commercial and Research Data
Center

DCD Best Data Center Initiative
2017

“Efficiency” BIOS

Uses large amounts of power even while idle
Designed to maximise computing performance

Uses low power when idle, scaling up with load
Designed to maximise power efficiency

WIND TUNNEL BASED SERVER MODELLING

6th April 2019 47

Heat
exchanger

Fan

Server
under test

Monitoring
database

Controller

Sensors

Server
metrics

Test
configuration

Wind tunnel

DATA GENERATED WIND TUNNEL TESTING A SINGLE SERVER

First CPU
cores

Second CPU
cores

Create 215 node Kubernetes cluster

Deploy replayable workloads

“Fill up” cluster to a
given level of utilisation

Measure power consumption

Set the BIOS on RISE Pod 2 machines

Record results

Measure performance of each taskDeploy Edgetic scheduler

Submit tests to Workload Generator

Let cluster cool then move to next test

215 nodes

OCP Hardware

Variety of workloads

Kubernetes containers

No prior workload knowledge

10-20% power savings

12 terabytes of telemetry data

Overhead of Edgetic Scheduler: 10ms per incoming workload

Cloud orchestration is a
powerful concept

Open Container Initiative
are standardising

container technology

Container orchestration
has a lot of

considerations

Kubernetes is
dominating the
container world

We looked at how we
can use intelligent

orchestration to reduce
power consumption

What are you guys doing
with k8s?

