
PAUL TOWNEND
ASSOCIATE PROFESSOR, UMEÅ

Apache Spark is a general-purpose data processing engine.

In Memory computation
engine

Almost 100x faster than
Hadoop MapReduce with in-

memory computations

Almost 10x faster than
Hadoop MapReduce using
computations with Disk IO

Faster batch processing

Systems that require iterative algorithmsProcessing of streaming data

Apps requiring interactive query processing

Features of Spark:

Core Layer

Apache Spark doesn’t provide any storage (like HDFS) or Resource Management capabilities.

It is just a unified framework for processing large amount of data near to real time.

The generalized layer of the framework. It defines all basic functions. All other
functionalities and extensions are built on top of this.

Ecosystems
Layer

Contains libraries operating on top of the Spark Core.

Resource
Management

layer

Manages own resources in standalone mode (single node cluster setup). For distributed
cluster mode, can be integrated with resource management modules like YARN

Spark applications run as independent sets of
processes on a cluster, coordinated by the
SparkContext object (aka Driver Program)

SparkContext sends application code (JAR or
Python files) and tasks to run to the Executors.

Each driver program has a web UI, typically on port
4040, that displays information about running

tasks, executors, and storage usage

Each application gets its own executor processes,
which stay up for the duration of the whole

application and run tasks in multiple threads.

This isolates applications from each other - each
driver schedules its own tasks, and tasks from

different applications run in different JVMs.

However, it also means that data cannot be shared
across different Spark applications (instances of

SparkContext) without writing to external storage

Spark provides high-level APIs in Java, Scala, and
Python

It provides an optimised engine that supports:
general execution graphs, high-level tools for

structured data processing, etc.

Another important aspect is the interactive shell (REPL). Using REPL, you can test the outcome of each line of code
without first needing to code and execute the entire job.

Spark Core

Spark DataFrame API

Java Scala Python R

Spark SQL Spark Streaming BlinkDB

Spark ML GraphX Tachyon

Standalone YARN Kubernetes

Spark Core

Spark Ecosystem

Resource Management

The Spark Core is the heart of spark. It deals with:

It also implements the key concept of Resilient Distributed Databases (RDDs)

memory management and fault
recovery

An immutable fault tolerant
distributed collections of objects

that can be operated on in
parallel.

scheduling, distributing and
monitoring jobs on a cluster

interacting with storage systems

An RDD can contain any type of
object and is created by loading

an external dataset or
distributing a collection from the

driver program

An RDD is a representation of a
dataset that is distributed

throughout the cluster.

Immutable Collection of Objects

Partitioned and Distributed

Stored in Memory

Partitions Recomputed on Failure

...

Hello Umea

...
Another line

Second line

...
And again

...
etc

Current frameworks like MapReduce provide many
abstractions for accessing a cluster’s computational

resources, but lack abstractions for leveraging
distributed memory.

This is an important advantage of Spark:
data reuse is common in many iterative M/L

algorithms, such as K-means clustering.

Another example is when a user runs multiple ad-
hoc queries on the same subset of data.

In Hadoop (and other frameworks) the only way to
reuse data between different jobs is to write it to an

external storage system, such as HDFS.

With in-memory RDDs, data can be processed faster.
The size of data that can be stored in distributed

memory is limited only by cluster size.

RDDs can be stored in memory (RAM) or on disk.
Most major performance gains come from holding

them in memory.

Iteration 1 Iteration 2 ...

Existing solutions (MapReduce, Storm, etc.) – Slow, needs high I/O

Iteration 1 Iteration 2 ...

RDD – Fast, in-memory

HDFS

YARN

Spark Spark or MR

Spark
Streaming

GraphX MLib Spark SQL Pig Hive Search

Impala

Spark components Core Hadoop

Data Size Time Nodes Cores

Hadoop
MR

102.5 TB 72 min 2100
50400

physical

Apache
Spark

100 TB 23 min 206
6592

virtualised

Daytona Gray Sort 100TB Benchmark

(3x faster using 10x fewer machines)

Handles batch,
interactive, and real-
time jobs in a single

framework

Has native integration
with Java, Python, and

Scala

Allows for
programming at a

higher level of
abstraction

Map/Reduce is just
one of its supported

constructs.

Performs in-memory
operations for big
performance gains

One of the major drawbacks of
MapReduce is that it is designed for

batch-processing jobs.

It is often inappropriate for dealing with
high velocity data that requires reliable

real-time processing capabilities.

A distributed real-time
computation system for
processing large volumes

of high-velocity data

It is extremely fast, and can
process over one million
records per second per

node.

Storm aims to make it easy
to reliably process

unbounded streams of
data

The core abstraction in Storm is the Stream.

A stream is data in the form of an unbounded sequence of tuples.

Storm provides primitives for transforming a stream into a new stream in a distributed and reliable way

The two basic Storm primitives are Spouts and Bolts.

Spout
A spout is a source of streams.

It may read tuples from a queue, or connect to an API (like Twitter), etc.
Can be reliable or unreliable (i.e. can replay a tuple or not)

Bolt

A bolt consumes any number of input streams,
does some processing, and possibly emits new streams.

Complex transformations may require multiple bolts to create.

Bolts can do anything, including run functions, filter tuples, streaming aggregations, streaming
joins, talk to databases, etc.

Streams are defined with a schema that names the fields in the tuple. Every stream has an ID.

A network of spouts and bolts are packaged into a topology.
This is the top level abstraction that is submitted to Storm clusters for execution.

A topology is a graph of stream transformations where each node is a spout or bolt

Edges in the graph indicate which bolts subscribe to which streams.

When a spout or bolt emits a tuple to a stream, it sends it to every bolt that subscribes.

Each node in a topology executes in parallel. You specify the parallelism you want for each node, and Storm will spawn that number
of threads across the cluster to do the execution

A Storm topology processes messages indefinitely.

On MapReduce we run jobs - on Storm we run Topologies

Master Node
Cluster

Coordination Launches Workers Worker Processes

Nimbus

Zookeeper

Zookeeper

Zookeeper

Supervisor

Supervisor

Supervisor

Supervisor

Worker

Worker

Worker

Worker

All coordination between Nimbus and the Supervisors is done through an Apache Zookeeper cluster.

Storm uses tuples as its data model.
A tuple is a named list of values (like Apache Pig, etc.)

Storm supports all primitive types, Strings, and byte
arrays as tuple field values. To use an object of another
type in a tuple, a serialiser needs to be implemented.

Every node in a topology must declare the output fields
for the tuples it emits.

public class NumberSpout implements IRichSpout

{

private SpoutOutputCollector collector;

private TopologyContext context;

@Override

public void open(Map cfg, TopologyContext con, SpoutOutputCollector coll)

{

this.context = con;

this.collector = coll;

}

@Override

public void nextTuple()

{

String theOutput = “” + new Random().nextInt(50);

this.collector.emit(new Values(theOutput));

}

@Override

public void declareOutputFields(OutputFieldsDeclarer dec)

{

dec.declare(new Fields(“TheNumber"));

}

}

Called at the start of the
stream. Sets context and

configuration information.

Called repeatedly. Can output a
tuple or do nothing.

Declares the tuple the spout
will emit

So what does this Spout do?

public static class ExclamationBolt extends BaseRichBolt

{

OutputCollector _collector;

@Override

public void prepare(Map conf, TopologyContext context, OutputCollector collector)

{

_collector = collector;

}

@Override

public void execute(Tuple tuple)

{

_collector.emit(tuple, new Values(tuple.getString(0) + "!!!"));

_collector.ack(tuple);

}

@Override

public void declareOutputFields(OutputFieldsDeclarer declarer)

{

declarer.declare(new Fields("word"));

}

}

Allows bolt to emit
tuples at any time.

Initialise component within
worker

Bolt execution

Declares output fields

What does this Bolt do?

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("words", new TestWordSpout(), 10);

builder.setBolt("exclaim1", new ExclamationBolt(), 3)

.shuffleGrouping("words");

builder.setBolt("exclaim2", new ExclamationBolt(), 2)

.shuffleGrouping("exclaim1");

User-specified ID

Object containing
processing logic

Amount of parallelism
(optional)

Spout
 words

Bolt
 exclaim1

Bolt
 exclaim2

10 parallel
threads

3 parallel
threads

2 parallel
threads

Assume ExclamationBolt()
appends !!!” to a tuple

What is the output of this topology if the
Spout stream is [Hello”] and [World”]

Hello!!!!!!
World!!!!!!

A stream grouping tells a topology how to
send tuples between two components

When a task for Bolt A emits a tuple to Bolt
B, which task should it send the tuple to?

Send tuples to a random tasks.

Group a stream by a subset of its fields, allowing equal values for that
subset of fields to go to the same task.

Also groups by fields, but load balance between two bolts

Replicate the stream to all of the Bolt’s tasks.

Send the entire stream to a single Bolt task with the lowest ID

Allow producer of tuple to decide which task receives the tuple.

Shuffle groupings

Fields groupings

Partial Key groupings

All groupings.

Global groupings

Direct groupings

Raw Data

Spout

Spout

Bolt

Bolt

Raw Data Spout

Bolt

Bolt

Bolt Bolt

HDFS

App

App

Services

Services
MapReduce

Storm guarantees that every spout tuple will be fully processed by the topology.

If a spout tuple is not completed within this timeout, Storm fails tuple and replays it later.

Bolts use emit method to inform they produced a new tuple, and ack method to declare they have finished

Storm tracks the tree of tuples triggered by every spout, and
determines when it has been fully processed.

Every topology has a message timeout associated with it.

The timeout can be configured on a topology-specific basis.

Global
grouping

Fields
grouping

Shuffle
grouping

Twitter
API

Twitter
Spout

HDFS

Sentence
Splitter Bolt

Sentence
Splitter Bolt

Sentence
Splitter Bolt

Word
count Bolt

Word
count Bolt

Report
Bolt

Twitter
API

Twitter
Spout

HDFS

Sentence
Splitter Bolt

Sentence
Splitter Bolt

Sentence
Splitter Bolt

Word
count Bolt

Word
count Bolt

Report
Bolt

Golovkin is pound for pound best
puncher in the world

pound

pound

puncher

is

in

pound = 2

puncher = 1

is = 1

in = 1

pound = 2

puncher = 1

is = 1

in = 1

Global
grouping

Fields
grouping

Shuffle
grouping

Twitter
API

Twitter
Spout

HDFS

Sentence
Splitter Bolt

Sentence
Splitter Bolt

Sentence
Splitter Bolt

Word
count Bolt

Word
count Bolt

Report
Bolt

Golovkin is pound for pound best
puncher in the world

pound

pound

puncher

is

in

pound = 2

puncher = 1

is = 1

in = 1

pound = 2

puncher = 1

is = 1

in = 1

Twitter Yahoo

Spotify Alibaba

Cisco Flickr

etc…

Elegant solution, but as systems
grow and the complexity of big

data analytics increases, the
model starts to struggle.

Failures and
straggling tasks

With greater scale, there is a higher likelihood of a cluster node failing or
unpredictably slowing down (i.e. stragglers).

The system must be able to automatically recover from failures and stragglers to
provide results in real time.

Static allocation of continuous operators to worker nodes makes it hard for traditional
systems to recover quickly from faults and stragglers.

Load Balancing

Uneven allocation of the processing load between the workers can cause bottlenecks
in a continuous operator system.

More likely to occur in large clusters and dynamically varying workloads.

The system needs to be able to dynamically adapt the resource allocation based on
the workload.

Unification of
streaming, batch
and interactive

workloads

In many use cases, it is attractive to query streaming data interactively, or to combine
it with static datasets (e.g. pre-computed models).

This is hard in continuous operator systems as they are not designed to the
dynamically introduce new operators for ad-hoc queries.

This requires a single engine that can combine batch, streaming and interactive
queries.

Advanced analytics
(SQL, ML, etc)

Complex workloads require continuously learning and updating data models, or even
querying latest” view of streaming data with SQL.

Having a common abstraction across these analytic tasks makes the developer’s job
much easier

To address these issues, Spark Streaming uses an architecture called discretized streams that directly leverages the

libraries and fault-tolerance of the Spark engine.

Instead of reading a single data record at a time, Spark Streaming

receivers (Spouts in Apache Storm parlance) discretizes the

streaming of data into tiny, sub-second micro-batches.

The Spark engine runs short tasks (tens of milliseconds) to process batches and output results to other systems

Unlike the COM, Spark tasks assigned dynamically to workers based on locality of data and available resources

This is to enable better load balancing and faster fault recovery.

(i.e. receivers accept data in parallel and

buffer it in the memory of the Spark

worker nodes)

Each of these batches of data
is an RDD.

This allows the streaming data
to be processed using any

Spark code or library.

There is a lot to cover
when talking about

distributed processing!

MapReduce is very
effective for specific

applications. Typically
batch processed.

Hadoop uses disk and is
fairly slow but manages

MapReduce well

Apache Spark performs
computation in-memory so

is much faster… but at
what cost?

Continuous Operator
Models (like Apache Storm)

are a good way to handle
high-velocity data

But Spark Streaming might
be more advanced

