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Hadoop is an open-source framework for
processing, storing and analysing data 

The fundamental principle is that it’s more 
efficient to store and process data by breaking 
it up and distributing it into many parts

Hadoop is a whole ecosystem of different 
products, largely presided over by the
Apache Software Foundation. 

Originally conceived in 2006 by
Doug Cutting and Mike Cafarella

(Yahoo! and the University of Washington)



The first version of Hadoop consisted of 
two core components:

HDFS and MapReduce

Both heavily inspired by Google

MapReduce
(Cluster Resource Management & Batch Data Processing)

HDFS
(Hadoop Distributed File System)



Typical workflow

Load data into the cluster
(HDFS writes)

Analyse the data
(Map Reduce)

Store results in the cluster
(HDFS writes)

Read the results from the cluster
(HDFS reads)





Inspired by the Google File System (GFS – 2003)

HDFS has a primary / secondary architecture

An HDFS cluster consists of a single NameNode -
the primary server that manages the file system 
namespace and regulates access to files by clients.

In addition, there are a number of DataNodes, 
usually one per node in the cluster, which manage 
storage attached to the nodes that they run on.

HDFS exposes a file system namespace and allows 
user data to be stored in files.

Internally, a file is split into one or more blocks 
and these blocks are stored in a set of DataNodes.



The NameNode executes file system operations like 
opening, closing, and renaming files/directories. It 
determines the mapping of blocks to DataNodes

The DataNodes serve read and write requests from the 
file system’s clients. They perform block creation, 
deletion, and replication on instruction from NameNode. 

Blocks in DataNodes are copied across various nodes as 
specified by the system preferences, so that if one 
DataNode fails, another DataNode containing the 
required data automatically comes online.

HDFS is built using Java; any machine that supports Java 
can run the NameNode or the DataNode software.



Client consults NameNode

Client writes block directly to one 
DataNode

DataNode replicates block

Cycle repeats for next block

The more blocks you have, the more machines will be able to work 
on the data in parallel

For fault-tolerance, each block is replicated as it is loaded. By default 
3 copies of each block in the cluster. But you can configure this.



With rack awareness, we can ensure data is not lost 
upon the failure of an entire rack

Can keep bulky data flows in-rack whenever 
possible

We assume that in-rack has higher bandwidth and 
lower latency

Rack numbers for each secondary Data Node need 
to be manually defined

We assume that in-rack has higher bandwidth and 
lower latency



Before a client writes a block to a cluster, it checks to see if all 
DataNodes which are expected to have a copy are ready.

As data is written for each block in the cluster, a replication 
pipeline is created.

Above, Client connects to DataNode 1, which then queries 
DataNode5, which then queries DataNode6.

If all are ready, then DataNode 1 sends a “Ready” message back 
to the Client

This means that as a DataNode receives block data, it will at the 
same time push a copy to the next node in the pipeline.

Rack Awareness can again play a part in this (intra-rack comms
are faster).



As each block in a file is written, the 
initial node in the pipeline will vary. 

This spreads around the traffic.

Hadoop uses a lot of network 
bandwidth and storage, depending 

on the replication factor configured.



Ideally, a file should eventually be spread 
across an entire cluster of machines

The more blocks that make up a file, the 
more machines the data can be spread on, 
and the more parallel processing power

When the cluster goes wide, our network 
needs to scale appropriately.



Every 10th heartbeat is a block 
report. This allows a NameNode
to build its metadata and ensure 
the required number of replicated 
blocks is met. 

In addition to holding all file 
system metadata, the NameNode
oversees the health of DataNodes
and coordinates data access.

DataNodes send “heartbeat” 
messages to the NameNode every 
3 seconds by TCP.



It can also – once again –
consider rack awareness 
(multi-rack copies).

If a NameNode stops receiving 
heartbeats from a DataNode,
it presumes it to have failed.

Based on the block reports it received, 
it knows which copies of blocks the 
failed node has, and can re-replicate 
those blocks to other DataNodes.



What is the weakness in this 
architecture?



Hadoop has a specific server role called the 
Secondary NameNode.

This node connects to the NameNode at regular 
intervals (default is one hour)
and copies its memory- and file- based metadata.

Secondary NameNode combines (checkpoints) 
the above information and delivers it back to the 
NameNode whilst maintaining a copy for itself 

If the NameNode dies, the Secondary 
NameNode can be used to recover.

In a busy cluster, an admin may set the housekeeping to 
be much more frequent.



To read files, a Client consults the NameNode
and asks for the block locations of a file.

The NameNode returns a list of each 
DataNode holding a block, for each block.

The Client picks a DataNode from each block 
list, and reads one block at a time with TCP.

It does not progress to the next block until the 
previous block completes.



In some cases, a DataNode itself may need to 
read a block of data from HDFS.

This could be when it has been asked to 
process data that it does not have locally.

The NameNode’s Rack Awareness can again 
provide optimal network behaviour in this 
case (encouraging intra-rack network traffic)



Hardware Failure
Detection of faults and quick 
automatic recover is a core 
architectural goal of HDFS.

Portability
HDFS has been designed to be 
easily portable from one 
platform to another. 

Large Data Sets
Typical files should be gigabytes, 
terabytes, or petabytes in size, 
and so HDFS is tuned to support 
large files.
It can support tens of millions of 
files in a single instance.

Streaming Data Access
HDFS is designed more for batch 
processing than interactive use 
by users.
Emphasis is on high throughput 
of data rather than low latency of 
data access.

Simple Coherency Model
Files are typically created and 
written once, and need not be 
changed.
This assumption simplifies data 
coherency issues. There is a plan 
to support appending-writes to 
files in the future.

Compute should move to Data
Computation is much more 
efficient if executed near the 
data it operates on, especially 
when the data size is huge.
HDFS provides interfaces for 
apps to move themselves closer 
to the data.



Typical workflow

Load data into the cluster
(HDFS writes)

Analyse the data
(Map Reduce)

Store results in the cluster
(HDFS writes)

Read the results from the cluster
(HDFS reads)





HDFS

MapReduce



Programming model for processing large data sets

running on commodity hardware in a reliable, fault-

tolerant manner.

Originally announced by Google in Dec. 2004.

Hadoop contains a very popular open-source 

MapReduce implementation. 

Basic concepts of MapReduce

Divide a big problem into sub-problems

Perform the same function on all sub-problems

Combine the output from all the sub-problems



Input splits

Input is divided into fixed-size pieces. These are each consumed by a single map.

Mapping

Data from each split is passed to a function to produce output <key, value> pairs.

(Sorting and Partitioning and) Shuffling 

Consolidates the Mapping phase outputs – the same keys are grouped together.

Reduce

Outputs from the shuffle are aggregated (same key) and a single value returned.



Map

Map is a stateless function which is used on a set 
of input values to calculate a set of key/value pairs

Reduce

Reduce is a stateless function which takes the 
set of these results and applies another 

function to them

In other words....

Map

Transforms a set of data into key value pairs

Reduce

Aggregates the data into a scalar (variable). A 
reducer receives all the data for a individual 

"key" from all the mappers

This approach assumes no dependencies between the input data





The outputs of Map and 
inputs/outputs of Reduce are 

always <key, value> pairs

Great for problems where 
the “sub problems” are NOT 
interdependent (e.g. output 
of one mapper should NOT 

depend on another)

The reduce phase does not 
begin execution until ALL 

mappers have finished

MapReduce takes care of scheduling tasks, 
monitoring them and re-executing failed tasks.

All data elements in MapReduce are immutable –
they cannot be updated.

In Hadoop, MapReduce is Rack and HDFS aware



Task duration pattern for jobs exhibiting stragglers in the 
Google cluster

Task duration pattern for an example 
MapReduce job with a Reduce straggler



Client submits MapReduce job to the Job Tracker

Job Tracker checks NameNode to learn which 

DataNodes have the file blocks (HDFS)

Job Tracker then provides the Task Tracker running 

on those nodes with the Java code required to 

execute the Map computation on their local data

Task Tracker starts a Map task and monitors its progress. Provides heartbeats & task status back to Job Tracker

As each Map task completes, its node stores the result in temporary storage (intermediate data). When all Maps 

complete, this is sent over the network to nodes running reduce tasks. 



The Job Tracker will always try to pick nodes with 

local data for a Map task.

This might not be possible (nodes with local data 

might be running too many other tasks, etc.)

In this situation, the Job Tracker will try to assign 

the task to a node in the same rack as the data 

(using Rack Awareness) wherever possible.

The NameNode will instruct the node to copy the 

data from the relevant DataNode.



Job Tracker starts a Reduce task on any of the nodes

It instructs the task to copy intermediate data from 
every completed Map task needed

If Map tasks respond quickly and flood the Reduce
task with TCP data, “Incast” or “fan-in” occurs

To handle this, the cluster network switches need to have good internal traffic management capabilities and buffers

The outputs from the Reducer tasks are written to HDFS (split into blocks, pipeline replication, etc.)



Facebook has a “friends in common” feature.

This list doesn’t change frequently, so to improve 

performance we can use MapReduce to calculate 

everyone’s friends in common once per day and 

store that result.

When someone visits a page, this stored result can 

then be displayed.

Assume friends are stored as:      Person -> [List of Friends]



Person -> [List of Friends]

A -> B C D

B -> A C D E

C -> A B D E

D -> A B C E

E -> B C D

Assume each line will be an input split to a mapper.

The mapper will output    <Friend Person, List of Friends>
As an example, the first two lines will have the result:

(A B) -> B C D

(A C) -> B C D

(A D) -> B C D

(A B) -> A C D E

(B C) -> A C D E

(B D) -> A C D E

(B E) -> A C D E



Person -> [List of Friends]

A -> B C D

B -> A C D E

C -> A B D E

D -> A B C E

E -> B C D

(A B) -> (A C D E)

(A B) -> (B C D)

(A C) -> (A B D E)

(A C) -> (B C D)

(A D) -> (A B C E)

(A D) -> (B C D)

(B C) -> (A B D E)

(B C) -> (A C D E)

(B D) -> (A B C E)

(B D) -> (A C D E)

(B E) -> (A C D E)

(B E) -> (B C D)

(C D) -> (A B C E)

(C D) -> (A B D E)

(C E) -> (A B D E)

(C E) -> (B C D)

(D E) -> (A B C E)

(D E) -> (B C D)

We are assuming that the list on the right has already been 
sorted by the MapReduce framework, ready for 
partitioning and shuffling.

The reducer function will intersect lists of values and 
output the same key with this result. 

Map and Sort



(A B) -> (A C D E)

(A B) -> (B C D)

(A C) -> (A B D E)

(A C) -> (B C D)

(A D) -> (A B C E)

(A D) -> (B C D)

(B C) -> (A B D E)

(B C) -> (A C D E)

(B D) -> (A B C E)

(B D) -> (A C D E)

(B E) -> (A C D E)

(B E) -> (B C D)

(C D) -> (A B C E)

(C D) -> (A B D E)

(C E) -> (A B D E)

(C E) -> (B C D)

(D E) -> (A B C E)

(D E) -> (B C D)

(A B) -> (C D)

(A C) -> (B D)

(A D) -> (B C)

(B C) -> (A D E)

(B D) -> (A C E)

(B E) -> (C D)

(C D) -> (A B E)

(C E) -> (B D)

(D E) -> (B C)

Now - for example - when A visits B's profile, we can 
quickly look up (A B) and see that they have two friends 

in common, (C D)

Partition, 
Shuffle, 
Reduce



Input Splitting

HDFS

Mapping

Mapper

Shuffling

M/R Framework

Reducing

Reducer

Final Result

HDFS

A -> B C D

B -> A C D E

C -> A B D E

D -> A B C E

E -> B C D

A -> B C D

B -> A C D E

C -> A B D E

D -> A B C E

E -> B C D

(A B) -> (B C D)

(A C) -> (B C D)

(A D) -> (B C D)

(A B) -> A C D E

(B C) -> A C D E

(B D) -> A C D E

(B E) -> A C D E

(A C) -> A B D E

(B C) -> A B D E

(C D) -> A B D E

(C E) -> A B D E

(A D) -> A B C E

(B D) -> A B C E

(C D) -> A B C E

(D E) -> A B C E

(B E) -> B C D

(C E) -> B C D

(D E) -> B C D

(A B) -> (C D)

(A C) -> (B D)

(A D) -> (B C)

(B C) -> (A D E)

(B D) -> (A C E)

(B E) -> (C D)

(C D) -> (A B E)

(C E) -> (B D)

(D E) -> (B C)

(A B) -> (C D)

(A C) -> (B D)

(A D) -> (B C)

(B C) -> (A D E)

(B D) -> (A C E)

(B E) -> (C D)

(C D) -> (A B E)

(C E) -> (B D)

(D E) -> (B C)

(A B) -> (A C D E)

(A B) -> (B C D)

(A C) -> (A B D E)

(A C) -> (B C D)

(A D) -> (A B C E)

(A D) -> (B C D)

(B C) -> (A B D E)

(B C) -> (A C D E)

(B D) -> (A B C E)

(B D) -> (A C D E)

(B E) -> (A C D E)

(B E) -> (B C D)

(C D) -> (A B C E)

(C D) -> (A B D E)

(C E) -> (A B D E)

(C E) -> (B C D)

(D E) -> (A B C E)

(D E) -> (B C D)



In Hadoop 1.0, there is tight coupling between 
Cluster Resource Management and MapReduce.

JobTracker is a single point of availability.
If JobTracker fails, all jobs must restart.

Hadoop 1.0 has a pre-defined number of map and reduce slots.
Map slots might be ‘full’ while Reduce slots are ‘empty’ (and vice versa)

There are also problems with resource utilization

NameNodes hold all metadata in main memory, so typically limited to 50-100 million files per cluster.

Yahoo estimated the limits of this design to be 
5000 nodes and 40,000 concurrent tasks



There are also limitations in running
non-MapReduce applications in Hadoop 1.0.

MapReduce works on batch-driven analysis.

But it is often desirable to run other computation 
paradigms in a Hadoop Cluster

MapReduce is batch driven; other engines work 
much better when results are needed in real-time.

Why run non-MapReduce applications?

Message-passing approaches are not possible in 
MapReduce (no interdependencies).

These problems (and more) are addressed in Hadoop v2.0





The biggest changes in Hadoop 2 are
HDFS Federation, YARN, a highly available 

NameNode, and the concept of Containers

Hadoop 2 moves from a restricted batch-oriented 
model to more interactive and specialized 

processing models





ResourceManager is the authority 
that arbitrates resources among all 

applications.
Replaces the JobTracker.

ApplicationMaster is tasked with 
negotiating resources from the 
ResourceManager and working 

with NodeManagers to execute & 
monitor tasks.

NodeManager is a per-machine 
framework responsible for 

containers, monitoring resource 
usage, and reporting to the 

ResourceManager. Each machine 
in a cluster is a NodeManager and 

a DataNode.

This allows more jobs to be run in parallel, and scalability is dramatically increased

The fundamental idea of YARN is to
split Hadoop resource management and job scheduling 

into separate processes (daemons).

Different types of app can be submitted to YARN 
(MapReduce, Giraph, etc.) An app is either single job or 

a Directed Acyclic Graph (DAG) of jobs.



MapReduce client Giraph client ...

ResourceManager

Dedicated machine

Cluster 1

NodeManagerDataNode

NameNode

Dedicated machine

Node 1

NodeManagerDataNode

Node 2

NodeManagerDataNode

Node 3

NodeManagerDataNode

Node 4

NodeManagerDataNode

Node 5

NodeManagerDataNode

Node 6

Clients can submit any 
type of application 
supported by YARN

Each physical machine 
contains both a DataNode

and a NodeManager.

NodeManager monitors resources. It 
does not have a fixed number of Map 

and Reduce slots, but dynamically 
creates and manages resource 

containers. It is like a generic version 
of the JobTracker in Hadoop 1.

ResourceManager
maintains the list of 

applications running on 
the cluster and a list of 
available resources on 

each live NodeManager.

It determines which 
application should get 
cluster resources next 
(based on many things 
such as priority, QoS, 

capacity, etc.)



MapReduce client Giraph client ...

ResourceManager

Dedicated machine

Cluster 1

NodeManagerDataNode

NameNode

Dedicated machine

Node 1

NodeManagerDataNode

Node 2

NodeManagerDataNode

Node 3

NodeManagerDataNode

Node 4

NodeManagerDataNode

Node 5

NodeManagerDataNode

Node 6

Start application by sending 
to the ResourceManager

ResourceManager starts 
an ApplicationManager
for the given application 

inside a container

Container ApplicationManager



MapReduce client Giraph client ...

ResourceManager

Dedicated machine

Cluster 1

NodeManagerDataNode

NameNode

Dedicated machine

Node 1

NodeManagerDataNode

Node 2

NodeManagerDataNode

Node 3

NodeManagerDataNode

Node 4

NodeManagerDataNode

Node 5

NodeManagerDataNode

Node 6

Container ApplicationManager

The ApplicationManager negotiates resources 
with the ResourceManager. 

It is responsible for the whole life of an 
application.

A resource request is simply a request for a 
number of containers, expressed as megabytes 

and CPU shares (currently).

Container Task Container Task Container Task

ApplicationManager then contacts NodeManagers to launch 
tasks in containers.

It monitors progress of these tasks, restarts failed ones, 
speculatively runs slow running ones, and calculates total values 

of application counters.

It spends its whole life negotiating containers to launch all of the 
tasks needed to complete its application

ResourceManager does not perform any monitoring of the 
tasks within an application - it checks the health of the 

ApplicationMasters.

If the ApplicationMaster fails, it can be restarted by the 
ResourceManager in a new container.

The ResourceManager takes care of ApplicationMasters,
while ApplicationMasters takes care of tasks.



This has several obvious benefits

Higher cluster utilisation (resources not used by one 
framework can be used by another)

Lower operational costs (only one type of cluster 
needs to be managed and tuned)

Reduced data motion (no need to move data between 
YARN and other systems)

The ResourceManager, NodeManager, and Container
are not concerned about the type of task or application 

they are to run.

Any application can run as long as an appropriate 
ApplicationMaster is implemented for it.

Managing a single cluster should also result in less data centre space used, which in turn leads to less 
operational cost, power spend, less cooling, etc.



HDFS2 – High-availability 
and federated NameNodes

for horizontal scalability

YARN – Moves beyond the 
batch processing of Hadoop 
1 and improved efficiency 

Whole eco-system of tools 
and applications




