
PAUL TOWNEND
ASSOCIATE PROFESSOR, UMEÅ

Hadoop is an open-source framework for
processing, storing and analysing data

The fundamental principle is that it’s more
efficient to store and process data by breaking
it up and distributing it into many parts

Hadoop is a whole ecosystem of different
products, largely presided over by the
Apache Software Foundation.

Originally conceived in 2006 by
Doug Cutting and Mike Cafarella

(Yahoo! and the University of Washington)

The first version of Hadoop consisted of
two core components:

HDFS and MapReduce

Both heavily inspired by Google

MapReduce
(Cluster Resource Management & Batch Data Processing)

HDFS
(Hadoop Distributed File System)

Typical workflow

Load data into the cluster
(HDFS writes)

Analyse the data
(Map Reduce)

Store results in the cluster
(HDFS writes)

Read the results from the cluster
(HDFS reads)

Inspired by the Google File System (GFS – 2003)

HDFS has a primary / secondary architecture

An HDFS cluster consists of a single NameNode -
the primary server that manages the file system
namespace and regulates access to files by clients.

In addition, there are a number of DataNodes,
usually one per node in the cluster, which manage
storage attached to the nodes that they run on.

HDFS exposes a file system namespace and allows
user data to be stored in files.

Internally, a file is split into one or more blocks
and these blocks are stored in a set of DataNodes.

The NameNode executes file system operations like
opening, closing, and renaming files/directories. It
determines the mapping of blocks to DataNodes

The DataNodes serve read and write requests from the
file system’s clients. They perform block creation,
deletion, and replication on instruction from NameNode.

Blocks in DataNodes are copied across various nodes as
specified by the system preferences, so that if one
DataNode fails, another DataNode containing the
required data automatically comes online.

HDFS is built using Java; any machine that supports Java
can run the NameNode or the DataNode software.

Client consults NameNode

Client writes block directly to one
DataNode

DataNode replicates block

Cycle repeats for next block

The more blocks you have, the more machines will be able to work
on the data in parallel

For fault-tolerance, each block is replicated as it is loaded. By default
3 copies of each block in the cluster. But you can configure this.

With rack awareness, we can ensure data is not lost
upon the failure of an entire rack

Can keep bulky data flows in-rack whenever
possible

We assume that in-rack has higher bandwidth and
lower latency

Rack numbers for each secondary Data Node need
to be manually defined

We assume that in-rack has higher bandwidth and
lower latency

Before a client writes a block to a cluster, it checks to see if all
DataNodes which are expected to have a copy are ready.

As data is written for each block in the cluster, a replication
pipeline is created.

Above, Client connects to DataNode 1, which then queries
DataNode5, which then queries DataNode6.

If all are ready, then DataNode 1 sends a “Ready” message back
to the Client

This means that as a DataNode receives block data, it will at the
same time push a copy to the next node in the pipeline.

Rack Awareness can again play a part in this (intra-rack comms
are faster).

As each block in a file is written, the
initial node in the pipeline will vary.

This spreads around the traffic.

Hadoop uses a lot of network
bandwidth and storage, depending

on the replication factor configured.

Ideally, a file should eventually be spread
across an entire cluster of machines

The more blocks that make up a file, the
more machines the data can be spread on,
and the more parallel processing power

When the cluster goes wide, our network
needs to scale appropriately.

Every 10th heartbeat is a block
report. This allows a NameNode
to build its metadata and ensure
the required number of replicated
blocks is met.

In addition to holding all file
system metadata, the NameNode
oversees the health of DataNodes
and coordinates data access.

DataNodes send “heartbeat”
messages to the NameNode every
3 seconds by TCP.

It can also – once again –
consider rack awareness
(multi-rack copies).

If a NameNode stops receiving
heartbeats from a DataNode,
it presumes it to have failed.

Based on the block reports it received,
it knows which copies of blocks the
failed node has, and can re-replicate
those blocks to other DataNodes.

What is the weakness in this
architecture?

Hadoop has a specific server role called the
Secondary NameNode.

This node connects to the NameNode at regular
intervals (default is one hour)
and copies its memory- and file- based metadata.

Secondary NameNode combines (checkpoints)
the above information and delivers it back to the
NameNode whilst maintaining a copy for itself

If the NameNode dies, the Secondary
NameNode can be used to recover.

In a busy cluster, an admin may set the housekeeping to
be much more frequent.

To read files, a Client consults the NameNode
and asks for the block locations of a file.

The NameNode returns a list of each
DataNode holding a block, for each block.

The Client picks a DataNode from each block
list, and reads one block at a time with TCP.

It does not progress to the next block until the
previous block completes.

In some cases, a DataNode itself may need to
read a block of data from HDFS.

This could be when it has been asked to
process data that it does not have locally.

The NameNode’s Rack Awareness can again
provide optimal network behaviour in this
case (encouraging intra-rack network traffic)

Hardware Failure
Detection of faults and quick
automatic recover is a core
architectural goal of HDFS.

Portability
HDFS has been designed to be
easily portable from one
platform to another.

Large Data Sets
Typical files should be gigabytes,
terabytes, or petabytes in size,
and so HDFS is tuned to support
large files.
It can support tens of millions of
files in a single instance.

Streaming Data Access
HDFS is designed more for batch
processing than interactive use
by users.
Emphasis is on high throughput
of data rather than low latency of
data access.

Simple Coherency Model
Files are typically created and
written once, and need not be
changed.
This assumption simplifies data
coherency issues. There is a plan
to support appending-writes to
files in the future.

Compute should move to Data
Computation is much more
efficient if executed near the
data it operates on, especially
when the data size is huge.
HDFS provides interfaces for
apps to move themselves closer
to the data.

Typical workflow

Load data into the cluster
(HDFS writes)

Analyse the data
(Map Reduce)

Store results in the cluster
(HDFS writes)

Read the results from the cluster
(HDFS reads)

HDFS

MapReduce

Programming model for processing large data sets

running on commodity hardware in a reliable, fault-

tolerant manner.

Originally announced by Google in Dec. 2004.

Hadoop contains a very popular open-source

MapReduce implementation.

Basic concepts of MapReduce

Divide a big problem into sub-problems

Perform the same function on all sub-problems

Combine the output from all the sub-problems

Input splits

Input is divided into fixed-size pieces. These are each consumed by a single map.

Mapping

Data from each split is passed to a function to produce output <key, value> pairs.

(Sorting and Partitioning and) Shuffling

Consolidates the Mapping phase outputs – the same keys are grouped together.

Reduce

Outputs from the shuffle are aggregated (same key) and a single value returned.

Map

Map is a stateless function which is used on a set
of input values to calculate a set of key/value pairs

Reduce

Reduce is a stateless function which takes the
set of these results and applies another

function to them

In other words....

Map

Transforms a set of data into key value pairs

Reduce

Aggregates the data into a scalar (variable). A
reducer receives all the data for a individual

"key" from all the mappers

This approach assumes no dependencies between the input data

The outputs of Map and
inputs/outputs of Reduce are

always <key, value> pairs

Great for problems where
the “sub problems” are NOT
interdependent (e.g. output
of one mapper should NOT

depend on another)

The reduce phase does not
begin execution until ALL

mappers have finished

MapReduce takes care of scheduling tasks,
monitoring them and re-executing failed tasks.

All data elements in MapReduce are immutable –
they cannot be updated.

In Hadoop, MapReduce is Rack and HDFS aware

Task duration pattern for jobs exhibiting stragglers in the
Google cluster

Task duration pattern for an example
MapReduce job with a Reduce straggler

Client submits MapReduce job to the Job Tracker

Job Tracker checks NameNode to learn which

DataNodes have the file blocks (HDFS)

Job Tracker then provides the Task Tracker running

on those nodes with the Java code required to

execute the Map computation on their local data

Task Tracker starts a Map task and monitors its progress. Provides heartbeats & task status back to Job Tracker

As each Map task completes, its node stores the result in temporary storage (intermediate data). When all Maps

complete, this is sent over the network to nodes running reduce tasks.

The Job Tracker will always try to pick nodes with

local data for a Map task.

This might not be possible (nodes with local data

might be running too many other tasks, etc.)

In this situation, the Job Tracker will try to assign

the task to a node in the same rack as the data

(using Rack Awareness) wherever possible.

The NameNode will instruct the node to copy the

data from the relevant DataNode.

Job Tracker starts a Reduce task on any of the nodes

It instructs the task to copy intermediate data from
every completed Map task needed

If Map tasks respond quickly and flood the Reduce
task with TCP data, “Incast” or “fan-in” occurs

To handle this, the cluster network switches need to have good internal traffic management capabilities and buffers

The outputs from the Reducer tasks are written to HDFS (split into blocks, pipeline replication, etc.)

Facebook has a “friends in common” feature.

This list doesn’t change frequently, so to improve

performance we can use MapReduce to calculate

everyone’s friends in common once per day and

store that result.

When someone visits a page, this stored result can

then be displayed.

Assume friends are stored as: Person -> [List of Friends]

Person -> [List of Friends]

A -> B C D

B -> A C D E

C -> A B D E

D -> A B C E

E -> B C D

Assume each line will be an input split to a mapper.

The mapper will output <Friend Person, List of Friends>
As an example, the first two lines will have the result:

(A B) -> B C D

(A C) -> B C D

(A D) -> B C D

(A B) -> A C D E

(B C) -> A C D E

(B D) -> A C D E

(B E) -> A C D E

Person -> [List of Friends]

A -> B C D

B -> A C D E

C -> A B D E

D -> A B C E

E -> B C D

(A B) -> (A C D E)

(A B) -> (B C D)

(A C) -> (A B D E)

(A C) -> (B C D)

(A D) -> (A B C E)

(A D) -> (B C D)

(B C) -> (A B D E)

(B C) -> (A C D E)

(B D) -> (A B C E)

(B D) -> (A C D E)

(B E) -> (A C D E)

(B E) -> (B C D)

(C D) -> (A B C E)

(C D) -> (A B D E)

(C E) -> (A B D E)

(C E) -> (B C D)

(D E) -> (A B C E)

(D E) -> (B C D)

We are assuming that the list on the right has already been
sorted by the MapReduce framework, ready for
partitioning and shuffling.

The reducer function will intersect lists of values and
output the same key with this result.

Map and Sort

(A B) -> (A C D E)

(A B) -> (B C D)

(A C) -> (A B D E)

(A C) -> (B C D)

(A D) -> (A B C E)

(A D) -> (B C D)

(B C) -> (A B D E)

(B C) -> (A C D E)

(B D) -> (A B C E)

(B D) -> (A C D E)

(B E) -> (A C D E)

(B E) -> (B C D)

(C D) -> (A B C E)

(C D) -> (A B D E)

(C E) -> (A B D E)

(C E) -> (B C D)

(D E) -> (A B C E)

(D E) -> (B C D)

(A B) -> (C D)

(A C) -> (B D)

(A D) -> (B C)

(B C) -> (A D E)

(B D) -> (A C E)

(B E) -> (C D)

(C D) -> (A B E)

(C E) -> (B D)

(D E) -> (B C)

Now - for example - when A visits B's profile, we can
quickly look up (A B) and see that they have two friends

in common, (C D)

Partition,
Shuffle,
Reduce

Input Splitting

HDFS

Mapping

Mapper

Shuffling

M/R Framework

Reducing

Reducer

Final Result

HDFS

A -> B C D

B -> A C D E

C -> A B D E

D -> A B C E

E -> B C D

A -> B C D

B -> A C D E

C -> A B D E

D -> A B C E

E -> B C D

(A B) -> (B C D)

(A C) -> (B C D)

(A D) -> (B C D)

(A B) -> A C D E

(B C) -> A C D E

(B D) -> A C D E

(B E) -> A C D E

(A C) -> A B D E

(B C) -> A B D E

(C D) -> A B D E

(C E) -> A B D E

(A D) -> A B C E

(B D) -> A B C E

(C D) -> A B C E

(D E) -> A B C E

(B E) -> B C D

(C E) -> B C D

(D E) -> B C D

(A B) -> (C D)

(A C) -> (B D)

(A D) -> (B C)

(B C) -> (A D E)

(B D) -> (A C E)

(B E) -> (C D)

(C D) -> (A B E)

(C E) -> (B D)

(D E) -> (B C)

(A B) -> (C D)

(A C) -> (B D)

(A D) -> (B C)

(B C) -> (A D E)

(B D) -> (A C E)

(B E) -> (C D)

(C D) -> (A B E)

(C E) -> (B D)

(D E) -> (B C)

(A B) -> (A C D E)

(A B) -> (B C D)

(A C) -> (A B D E)

(A C) -> (B C D)

(A D) -> (A B C E)

(A D) -> (B C D)

(B C) -> (A B D E)

(B C) -> (A C D E)

(B D) -> (A B C E)

(B D) -> (A C D E)

(B E) -> (A C D E)

(B E) -> (B C D)

(C D) -> (A B C E)

(C D) -> (A B D E)

(C E) -> (A B D E)

(C E) -> (B C D)

(D E) -> (A B C E)

(D E) -> (B C D)

In Hadoop 1.0, there is tight coupling between
Cluster Resource Management and MapReduce.

JobTracker is a single point of availability.
If JobTracker fails, all jobs must restart.

Hadoop 1.0 has a pre-defined number of map and reduce slots.
Map slots might be ‘full’ while Reduce slots are ‘empty’ (and vice versa)

There are also problems with resource utilization

NameNodes hold all metadata in main memory, so typically limited to 50-100 million files per cluster.

Yahoo estimated the limits of this design to be
5000 nodes and 40,000 concurrent tasks

There are also limitations in running
non-MapReduce applications in Hadoop 1.0.

MapReduce works on batch-driven analysis.

But it is often desirable to run other computation
paradigms in a Hadoop Cluster

MapReduce is batch driven; other engines work
much better when results are needed in real-time.

Why run non-MapReduce applications?

Message-passing approaches are not possible in
MapReduce (no interdependencies).

These problems (and more) are addressed in Hadoop v2.0

The biggest changes in Hadoop 2 are
HDFS Federation, YARN, a highly available

NameNode, and the concept of Containers

Hadoop 2 moves from a restricted batch-oriented
model to more interactive and specialized

processing models

ResourceManager is the authority
that arbitrates resources among all

applications.
Replaces the JobTracker.

ApplicationMaster is tasked with
negotiating resources from the
ResourceManager and working

with NodeManagers to execute &
monitor tasks.

NodeManager is a per-machine
framework responsible for

containers, monitoring resource
usage, and reporting to the

ResourceManager. Each machine
in a cluster is a NodeManager and

a DataNode.

This allows more jobs to be run in parallel, and scalability is dramatically increased

The fundamental idea of YARN is to
split Hadoop resource management and job scheduling

into separate processes (daemons).

Different types of app can be submitted to YARN
(MapReduce, Giraph, etc.) An app is either single job or

a Directed Acyclic Graph (DAG) of jobs.

MapReduce client Giraph client ...

ResourceManager

Dedicated machine

Cluster 1

NodeManagerDataNode

NameNode

Dedicated machine

Node 1

NodeManagerDataNode

Node 2

NodeManagerDataNode

Node 3

NodeManagerDataNode

Node 4

NodeManagerDataNode

Node 5

NodeManagerDataNode

Node 6

Clients can submit any
type of application
supported by YARN

Each physical machine
contains both a DataNode

and a NodeManager.

NodeManager monitors resources. It
does not have a fixed number of Map

and Reduce slots, but dynamically
creates and manages resource

containers. It is like a generic version
of the JobTracker in Hadoop 1.

ResourceManager
maintains the list of

applications running on
the cluster and a list of
available resources on

each live NodeManager.

It determines which
application should get
cluster resources next
(based on many things
such as priority, QoS,

capacity, etc.)

MapReduce client Giraph client ...

ResourceManager

Dedicated machine

Cluster 1

NodeManagerDataNode

NameNode

Dedicated machine

Node 1

NodeManagerDataNode

Node 2

NodeManagerDataNode

Node 3

NodeManagerDataNode

Node 4

NodeManagerDataNode

Node 5

NodeManagerDataNode

Node 6

Start application by sending
to the ResourceManager

ResourceManager starts
an ApplicationManager
for the given application

inside a container

Container ApplicationManager

MapReduce client Giraph client ...

ResourceManager

Dedicated machine

Cluster 1

NodeManagerDataNode

NameNode

Dedicated machine

Node 1

NodeManagerDataNode

Node 2

NodeManagerDataNode

Node 3

NodeManagerDataNode

Node 4

NodeManagerDataNode

Node 5

NodeManagerDataNode

Node 6

Container ApplicationManager

The ApplicationManager negotiates resources
with the ResourceManager.

It is responsible for the whole life of an
application.

A resource request is simply a request for a
number of containers, expressed as megabytes

and CPU shares (currently).

Container Task Container Task Container Task

ApplicationManager then contacts NodeManagers to launch
tasks in containers.

It monitors progress of these tasks, restarts failed ones,
speculatively runs slow running ones, and calculates total values

of application counters.

It spends its whole life negotiating containers to launch all of the
tasks needed to complete its application

ResourceManager does not perform any monitoring of the
tasks within an application - it checks the health of the

ApplicationMasters.

If the ApplicationMaster fails, it can be restarted by the
ResourceManager in a new container.

The ResourceManager takes care of ApplicationMasters,
while ApplicationMasters takes care of tasks.

This has several obvious benefits

Higher cluster utilisation (resources not used by one
framework can be used by another)

Lower operational costs (only one type of cluster
needs to be managed and tuned)

Reduced data motion (no need to move data between
YARN and other systems)

The ResourceManager, NodeManager, and Container
are not concerned about the type of task or application

they are to run.

Any application can run as long as an appropriate
ApplicationMaster is implemented for it.

Managing a single cluster should also result in less data centre space used, which in turn leads to less
operational cost, power spend, less cooling, etc.

HDFS2 – High-availability
and federated NameNodes

for horizontal scalability

YARN – Moves beyond the
batch processing of Hadoop
1 and improved efficiency

Whole eco-system of tools
and applications

