
Study Guide SF3625

Theory of Partial Di�erential Equations.

This is not really a study guide. It is an attempt to give a list of the most important de�nitions and Theorems of the
course. To try to write such a list is, though, a fools errand. Everything is interconnected and mentioning one concept,
say Sobolev spaces, would immediately require an understanding of other concepts such as the Lebesgue integral, but
who could understand the Lebesgue integral set without also knowing what a Lebesgue measure is (?) and understanding
measures is pretty much impossible without knowing a fair deal of point-set topoloy which is incomprehensible without
an understanding of... you get the point. But here I will single out the parts of the course that I want you to focus on
and try to understand. I have also included some information about the exam and a list of the sections in the book that
I want you to really study, the sections that I want you to skim, and also some sections that was on the reading-list but
we did not cover at all during the lectures and I don't expect you to read.

A summary of the most important parts of the course (in my view):1

1. Laplace equation. The Laplace equation is one of the most important partial di�erential equations. It is also the
easiest equation to analyse; therefore much of the PDE theory has been inspired by results �rst proved for the Laplace
equation. Knowledge of the Laplace equation therefore serves as a good foundation for all the more abstract results later
in the course. The most important theory for the Laplace equation is:

1. Solving the Poisson equation (Theorem 1 in section 2.2.1)2

2. The mean value formula (Theorem 2 in section 2.2.2).

3. The strong maximum principle (Theorem 4 section 2.2.3) and uniqueness of solutions (this is a direct consequence
of the maximum principle) (Theorem 5 in section 2.2.3).

4. The de�nition and of a Green's function and the main theorem for Green's functions (De�nition in Section 2.2.4
and Theorem 12 in the same section). One should also have some basic understanding of the Greens function in a
half-space and unit ball (say Theorem 14 on the Poisson formula in a half space in Section 2.2.4).

2. The heat and wave equation. The heat and wave equations are model equations for parabolic and hyperbolic
partial di�erential equations and therefore important to study. Simple things, such as the fact that you need an initial
data (but cannot specify the �nal data) in order to get a unique solution for the heat equation but that you need to specify

both u(x, 0) and ∂u(x,0
∂t for the wave equation directly carries over to more general parabolic and hyperbolic equations.

However, the approaches for the Laplace equation and the heat/wave equations are similar and if you understand the
Laplace equation well then it will be easy to pick up the corresponding theory for the heat/wave equations - therefore I
will expect that you know the theory for the Laplace equation in more detail.

The most important theory for the heat/wave equation is:

1. Solving the initial value problem for the heat equation (Theorem 1 in section 2.3.1).

2. the Duhamel's principle (Theorem 2 in section 2.3.1), you will also need this for the wave equation.

3. Uniqueness of the heat equation by using energy methods (Theorem 10 in section 2.3.4). Since energy methods are
used very often in the weak formulation of PDE you might as well get used to it in the easiest case.

4. It is rather technical (and quite frankly nasty) to derive Kircho�'s formula for the wave equation in two and three
dimensions (D'Alembert's formula for n = 1 is somewhat nicer). But try to read the construction carefully at least
once (section 2.4.1).

5. Read the sections on non-homogeneous solutions of for the wave equation and the energy method proof of uniqueness
(section 2.4.2 and 2.4.3). Focus on the similarities in these proofs with the corresponding theorems for the heat
equation.

3. Sobolev spaces. Throughout the course I have been repeating that the only thing we do is �rst year calculus.
This is true at least partially true. Much of the theory for PDE can be seen as doing calculus in Banach spaces. The
right Banach spaces for studying weak solutions of PDE are the Sobolev spaces. Sobolev spaces have the right generality
for us to de�ne derivatives in a way that we recognise while still having many of the nice properties of Rn (they are in
particular complete and weakly compact). It is absolutely necessary to have a basic understanding of Sobolev spaces in
order to study weak solutions of PDE.

The most important theory is:

1But since I will writhe the exam - my view is supreme in this context!
2All my references are to the �rst edition. But I hope that the sections and theorems have the same numbering in the second edition.



1. The de�nition of Sobolev spaces (weak derivatives, norms, et.c. in sections 5.2.1 and 5.2.2)

2. That Sobolev spaces are Banach spaces (Theorem 2 in section 5.2.3).

3. Approximation by smooth functions. There are di�erent theorems for this but make sure to understand the local
approximation by smooth functions (Theorem 1 in section 5.3.1).

4. Sobolev's and Morrey's inequalities are central (Theorem 1 in section 5.6.1 and Theorem 4 in section 5.6.2).

5. Compactness is one of the most important concepts in analysis so the Rellich-Kondrachev compactness Theorem is
absolutely central to the theory of Sobolev spaces (Theorem 1 in section 5.7).

6. You should know the relation between di�erence quotients and weak derivatives (Theorem 3 section 5.8.2) since this
is what is needed to prove higher regularity for weak solutions to PDE.

4. Elliptic equations. The most important theory is:

1. The de�nition of weak solutions in section 6.1.2. Obviously you should not only memorize the de�nition. You should
try to convince yourself that the de�nition makes sense and that the very weak assumptions on the weak solution
(essentially, we only assume that a solution to a second order PDE only have one derivative!) is very �ne tuned in
order for us to be able to show existence for a very abstract and complicated set of equations.

2. The Lax-Milgram Theorem (Theorem 1 in section 6.2.1). I do not like the proof and I am inclined to say that it
would be much better to include the proof of Riesz representation theorem. But the Lax-Milgram Theorem is the
abstract theorem from functional analysis that allows us to show existence of solutions to elliptic PDE - so read it.

3. Energy estimates (Theorem 2 in section 6.2.2). It is more or less always some kind of estimate that allows us to use
the functional analysis we need in order to prove existence of solutions.

4. The �rst existence theorem for weak solutions (Theorem 3 in section 6.2.2).

5. Interior regularity (Theorem 1 in section 6.3.1). The more you study PDE the more you will realize that it is estimates
of di�erent kinds that are the most important results. For now we should agree that it is at least comforting to know
that the solutions of second order equations has second derivatives in some sense.

6. Hopf's Lemma and the strong maximum principle (Theorem 3 and the lemma in section 6.4.2). The Hopf lemma
uses a very common technique in PDE theory: Barriers. So it is nice to see the technique in this course.

5. Parabolic/Hyperbolic PDE. Above I mentioned that much of the theory for Laplace equation carries over
directly to the heat/wave equation. The same is true for elliptic and parabolic/hyperbolic equations. Also much of
the theory for parabolic equations carries over directly to hyperbolic equations. Therefore it is natural to study elliptic
equations with more care than parabolic and parabolic with more care than hyperbolic.3

I will only expect you to skim through much of the theory for parabolic/hyperbolic equations. But there are some new
techniques for evolution equations that I want you to study. The most important theory is:

1. the de�nitions of weak solutions (you will �nd the de�nitions in sections 7.1.1 and 7.2.1).

2. Galerkin's method to construct approximate solutions (basically section 7.2.1a for the parabolic case; skim through
section 7.2.2a with enough care so that you see that the method is the same for hyperbolic equations).

3. You should have an idea of the proof of how to show existence of solutions (Theorem 3 in section 7.1.2b). The main
point of the proof is that we may estimate the norm of the approximate solutions and thus pass to the limit. You
need, in particular to understand Theorem 2 in section 7.1.2b. The proofs are very similar for hyperbolic equations
so do not feel obliged to read them.

4. The weak maximum principle for parabolic equations.

6 Calculus of variations. Calculus of variations is the only part of this course where we show any kind of existence
of solutions for non-linear equations. There are 3 main things that I would want you to read carefully:

1. Existence of weak solutions (Theorem 2 in section 8.2.2). But the central part of Theorem 2 is Theorem 1 (lower
semi-continuity for convex energies) in the same section. You should know them both.

2. Uniqueness of minimizers (Theorem 3 in section 8.2.2). Note that this theorem is just the same as uniqueness of the
minimum of a strictly convex function on R.

3This probably true only in a course like this. There is, for instance, a huge theory for hyperbolic equations that does not have any
counterpart in the elliptic/parabolic theory. But in this course when we focus on the theory of weak solutions it makes sense to study elliptic
equations with more care and then just skim over the parabolic/hyperbolic theory where the theory is more or less the same.



3. That the minimizers satis�es the Euler-Lagrange equations (Theorem 4 in section 8.2.3).

Chapters included in the course.

Technically the course includes all the material on the reading list for the lectures. But in reality I only expect you to
skim parts of the text. I will split the text into three kinds of importance: what you have to read, what you should skim
through, and what you don't have to read but was on the list.

Again I will refer to sections (believing that the sections agree between editions).

The important parts that you have to read:

1. Chapter 2.2, 2.3.1, 2.3.4, 2.4.1abc, 2.4.2, 2.4.3.

2. Chapter 5.1, 5.2, 5.3.1, 5.6.1, 5.6.2, 5.7, 5.8.2a

3. Chapter 6.1, 6.2.1, 6.2.2, 6.3.1 (skim the higher regularity theorem), 6.4

4. Chapter 7.1.1, 7.1.2, 7.1.4a, 7.2.1, 7.2.2a

5. Chapter 8.1.1, 8.1.2, 8.1.3, 8.2.1, 8.2.2, 8.2.3

The parts that you should have some knowledge of and need to skim through.

1. Chapter 2.3.2, 2.3.3

2. Chapter 5.3.2, 5.6.3, 5.8.1

3. Chapter 7.1.3, 7.2.2b, 7.2.2c, 7.2.3, 7.2.4

4. Chapter 8.3.1

What I did not have time to mention at all during the lectures and will not ask about at the exam.

1. Chapter 2.4.1de

2. Chapter 7.1.4b

3. Chapter 8.1.4, 8.2.4, 8.3.2

Some information about the exam:

Format: The �nal exam will consist of 4 problems and last for 4 hours. Two of these problems will be taken from
your homework sets (or slight variations of homework problems).

When and where: The exam will be on the 18th of January from 8:00-12:00 in room 3418 (the usual lecture
room).

What is expected of you at the exam? Even though I have tried to cut down the reading signi�cantly there is
still to much to memorize for an exam. I will try to make the exam rather easy so that if you read all the �important
theory� from the list above you will be able to pass. I do not want you to try to memorize it all - that is not worth your
time. But I want you to be able to understand the theory when you read it and I will try to write the exam to check that
you have spent some time with the course material.


