## PDE SF3625 Homework 3.

John Andersson johnan@kth.se
This is your homework assignments for the third part of the course covering primarily weak solutions and variational calculus. ${ }^{1}$ Do not forget to add your name, email and Swedish personal id number (if you have one) to your solutions.

You will hand in one exercise (your choice which) from Part 1 and one exercise (again your choice) from Part 2.

Your solutions are due on the 11th of January (before midnight).

## Part 1, Weak solutions.

1. The Navier-Stokes equations consists of a system of PDE in a domain $D \times$ $(0, T), D \subset \mathbb{R}^{3}$,

$$
\begin{equation*}
\frac{\partial \mathbf{u}(x, t)}{\partial t}-\Delta \mathbf{u}(x, t)+\mathbf{u}^{T} \cdot \nabla \mathbf{u}(x, t)-(\nabla p(x, t))^{T}=\mathbf{f}(x, t) \tag{1}
\end{equation*}
$$

where $\mathbf{u}$ and $\mathbf{f}$ are vector valued functions:

$$
\mathbf{u}(x, t)=\left[\begin{array}{c}
u_{1}(x, t) \\
u_{2}(x, t) \\
u_{3}(x, t)
\end{array}\right] \text { and } \mathbf{f}(x, t)=\left[\begin{array}{c}
f_{1}(x, t) \\
f_{2}(x, t) \\
f_{3}(x, t)
\end{array}\right]
$$

and $\mathbf{u}^{T}$ denotes the transpose of $\mathbf{u}$. The function $p(x, t)$ is a scalar valued function: "the pressure". ${ }^{2}$ Also $\operatorname{div}(\mathbf{u})=0$ in the weak sense:

$$
\begin{equation*}
\int_{D} \mathbf{u}^{T}(x, t) \cdot \nabla g(x) d x=0 \quad \text { for a.e. } 0<t<T \text { and every } g \in W_{0}^{1,2}(D) \tag{2}
\end{equation*}
$$

We say that a function satisfying $\mathbf{u} \in L^{2}\left((0, T) ; W_{0}^{1,2}(D)\right)$ and $\frac{\partial \mathbf{u}}{\partial t} \in L^{2}\left((0, T) ; H^{-1}(D)\right)$ is a weak solution of the Navier-Stokes equations if $\mathbf{u}$ satisfies (2) and for a.e. $t \in(0, T)$

$$
\begin{equation*}
\left\langle\frac{\partial \mathbf{u}}{\partial t}, \mathbf{v}\right\rangle+B[\mathbf{u}, \mathbf{v}, t]=(\mathbf{f}, \mathbf{v}) \tag{3}
\end{equation*}
$$

and every $\mathbf{v} \in W^{1,2}(D)$ that is divergence free in the sense of (2), and $\mathbf{u}(x, 0)$ has some specified values in $L^{2}$. Here $B$ is the non-linear form

$$
B[\mathbf{u}, \mathbf{v}, t]=\int_{D}\left(\sum_{i=1}^{3} \nabla u_{i}(x, t) \cdot \nabla v_{i}(x, t)+\sum_{i, j=1}^{3} u_{j}(x, t) \frac{\partial u_{i}(x, t)}{\partial x_{j}} v_{i}(x, t)\right) d x
$$

[^0]Assuming that we can find an orthogonal basis of $W_{0}^{1,2}(D)$ of divergence free vector-valued functions $\left\{\mathbf{w}_{k}\right\}_{k=1}^{\infty}$ that are orthonormal in $L^{2}(D)$. Make an argument (don't provide all the details) that we can show existence of weak solutions for the Navier-Stokes equations if we can prove the estimate ${ }^{3}$

$$
\|\mathbf{u}\|_{L^{2}\left((0, T) ; W_{0}^{1,2}(D)\right)}+\left\|\frac{\partial \mathbf{u}}{\partial t}\right\|_{L^{2}\left((0, T) ; H^{-1}(D)\right)} \leq\|\mathbf{f}\|_{L^{2}\left((0, T) ; L^{2}(D)\right)}+\|\mathbf{u}(x, 0)\|_{L^{2}(D)}
$$

2. [Homogenization] Let $a(x) \in L^{\infty}\left(\mathbb{R}^{n}\right)$ be defined by

$$
a(x)= \begin{cases}2 & 2 k<x_{1} \leq 2 k+1 \text { for } k \in \mathbb{N} \\ 1 & 2 k+1<x_{1} \leq 2 k+2 \text { for } k \in \mathbb{N}\end{cases}
$$

Also let $u_{\epsilon}(x) \in W_{0}^{1,2}(D)$, for $\epsilon>0$, be the solution, in a domain $D \subset \mathbb{R}^{n}$, of the following PDE

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(a(x / \epsilon) \frac{\partial u_{\epsilon}(x)}{\partial x_{i}}\right)=f(x) \in L^{2}(D) \tag{4}
\end{equation*}
$$

Show that $u_{\epsilon} \rightarrow u_{0}$ weakly in $W_{0}^{1,2}(D)$ as $\epsilon \rightarrow 0$ (maybe through a subsequence).

## Part 2, Calculus of variations.

3. [Convexity in the calculus of variations] Let $F(p)=(p-1)^{2}(p-2)^{2}$ and define the energy

$$
E(u)=\int_{0}^{1} F\left(\frac{\partial u(x)}{\partial x}\right) d x
$$

on the set

$$
K=\left\{u \in W^{1,4}((0,1)) ; u(0)=0 \text { and } u(1)=3 / 2\right\} .
$$

Show that for any function $g \in C^{1}([0,1])$ such that $1 \leq g^{\prime}(x) \leq 2, g(0)=0$ and $g(1)=3 / 2$ there exists a minimizing sequence $u_{j} \in K$ satisfying $E\left(u_{j}\right)=0$ and $u_{j} \rightarrow g$ weakly in $W^{1,4}((0,1))$. Will $g$ be a minimizer?
4. [About coercivity] Given a function $f \in L^{\infty}\left(B_{1}(0)\right), B_{1}(0) \subset R^{n}$, we define the energy

$$
E(u)=\int_{B_{1}(0)}\left(|\nabla u(x)|^{2}-|u(x)|^{p}+f(x) u(x)\right) d x
$$

on the set $u \in W_{0}^{1,2}\left(B_{1}(0)\right) \cap L^{p}\left(B_{1}(0)\right)$.
Show that there exists a constant $\hat{p}>1$ depending only on $n$ such that

[^1]1. If $1 \leq p<\hat{p}$ then the energy $E$ has a unique minimizer.
2. If $\hat{p}<p$ then the energy $E$ does not have any minimizer.
3. In the proof (in Evans) of the theorem stating that if

$$
\text { the mapping } p \mapsto L(p, z, x) \text { is convex }
$$

then the energy

$$
I[u]=\int_{U} L(\nabla u, u, x) d x
$$

is lower semi-continuous ${ }^{4}$ evans actually uses more than convexity. During the lectures we also assumed some continuity in the $z$ variable of $L$ and of $\nabla_{p} L(p, z, x)$.

Explain where this is needed in Evans proof and show that lower semicontinuity in the $z$ variable is enough.

[^2]
[^0]:    ${ }^{1}$ If you email your solutions email me a PDF file that is either computer written or a scan of your handwritten solutions. Do not send me photos of your solution since they are usually very difficult to read.
    ${ }^{2}$ Do not care about the pressure, it is some form of Lagrange multiplier of the restriction that $\mathbf{u}$ is divergence free and will not play any part in our weak formulation.

[^1]:    ${ }^{3}$ The estimate is very easy to prove, try if you want to.

[^2]:    ${ }^{4}$ In the first edition of Evans this is Theorem 1 on page 446 in chapter 8.2 - probably it is in chapter 8.2 in the second edition as well

