PDE SF3625 Homework 2.

John Andersson johnan@kth.se
This is your homework assignments for the second part of the course covering primarily Sobolev spaces in Evans book. ${ }^{1}$ Do not forget to add your name, email and Swedish personal id number (if you have one) to your solutions.

You will hand in one exercise (your choice which) from Part 1 and one exercise (again your choice) from Part 2.

Your solutions are due on the 7 th of December (before midnight).

Part 1, basic Sobolev Spaces.

1. Let $f \in L^{p}([0,1]), 1 \leq p<\infty$ and define

$$
u(x)=\int_{0}^{x} f(t) d t
$$

Prove that $u \in W^{1, p}([0,1])$.
2. Let $f: \mathbb{R} \mapsto \mathbb{R}$ have a weak derivative $f^{\prime} \in L^{p}(\mathbb{R})$. Prove that

1. if $p \geq 1$ then f is continuous on \mathbb{R}.

Remark: Note that this is actually better than what we get from the Morrey embedding theorem: which does not apply in this case since $p=$ $n=1$.
2. If $\lim _{x \rightarrow-\infty} f(x)=0$ and $p=1$ then f is bounded.
3. If $\lim _{x \rightarrow-\infty} f(x)=0$ and $p>1$ then f is not necessarily bounded.

Part 2, More advanced exercises Sobolev Spaces.

3. Let $f_{j} \in L^{p}\left(\mathbb{R}^{n}\right), j=1,2, \ldots$, and assume that each f_{j} has weak derivatives $\nabla f_{j}=\left(\partial_{1} f_{j}, \partial_{2} f_{j}, \ldots, \partial_{n} f_{j}\right)$ satisfying the following estimate for each ball $B_{1}(x) \subset \mathbb{R}^{n}$

$$
\int_{B_{1}(x)}\left|\nabla f_{j}(y)\right|^{2} d y \leq C \int_{B_{1}(x)}\left|f_{j}(y)\right|^{2} d y
$$

for some constant C (C does not depend on f_{j} or $\left.x\right)$.
For which p does it follow that: if f_{j} converge weakly in $L^{p}\left(\mathbb{R}^{n}\right)$ to f_{0} then f_{j} converge strongly to f_{0} in $L^{p}\left(\mathbb{R}^{n}\right)$.

[^0]4. Let $u \in C_{c}^{\infty}\left(B_{1}(0)\right), B_{1}(0) \subset \mathbb{R}^{n}$, satisfy (for some constant)
$$
\int_{B_{1}(0)} \nabla u(x) \cdot \nabla v(x) d x \leq C \int_{B_{1}(0)} u(x) v(x) d x
$$
for every $v \in C^{\infty}\left(B_{1}\right)$. For simplicity we assume that $u \geq 0$.
Prove that for any $q \geq 1$ there is a constant C_{q} such that
\[

$$
\begin{equation*}
\|u\|_{L^{q}\left(B_{1}(0)\right)} \leq C_{q}\|u\|_{L^{2}\left(B_{1}(0)\right)} \tag{1}
\end{equation*}
$$

\]

Hint: Choose $u=v$, use (1) and the Sobolev inequality to show that $u \in L^{2^{*}}$ with control over the norm $\|u\|_{L^{2^{*}}}$. Then note that for any $\alpha>1$

$$
\begin{equation*}
\left|\nabla u^{\alpha} \cdot \nabla u\right|=\frac{4 \alpha}{(1+\alpha)^{2}}\left|\nabla u^{\frac{\alpha+1}{2}}\right|^{2} . \tag{2}
\end{equation*}
$$

You may therefore apply (1) with $v=u^{2^{*}-1}$, use (2) and the Sobolev inequality to show that $u^{\frac{2^{*}-2}{2}} \in L^{2^{*}}\left(B_{1}(0)\right)$. Iterate!

[^0]: ${ }^{1}$ If you email your solutions email me a PDF file that is either computer written or a scan of your handwritten solutions. Do not send me photos of your solution since they are usually very difficult to read.

