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PDE SF3625 Homework 1.

John Andersson johnan@kth.se

This is your homework assignments for the first part of the course covering
Chapter 2 in Evans book.1 Do not forget to add your name, email and
Swedish personal id number (if you have one) to your solutions.

You will hand in one exercise (your choice which) from Part 1 and one
exercise (again your choice) from Part 2.

Your solutions are doe on the 18th of October (before midnight).

Part 1, basic analysis.

1. In Evan’s book, in the displayed formula after equation (16) in Chapter 2.3
(p.51 of the first edition) it is claimed that

lim
ε→0

∫
Rn

Ψ(y, ε)f(x− y, t− ε)dy = f(x, t).

It is also remarked that the limit “is computed as in Theorem 1”.

1. Explain why the limit is not exactly the same as any limit in the proof of
Theorem 1.

2. Provide a proof for the limit.

2. In the proof of Lemma 1 in Chapter 2.4 it is stated that: “after some
computations ...

Urr(x; r, t) =
1

nα(n)rn−1

∫
∂Br(x)

∆udS +

(
1

n
− 1

)
1

α(n)rn

∫
Br(x)

∆udy.′′

Prove this!

3. During the lectures we have stated that2 if f ∈ C2(D), u ∈ C2(D ∩ C(D)
and

∆u(x) = f(x) in D
u(x) = 0 on ∂D

then

u(x) =

∫
D

f(y)G(x, y)dy, (1)

1If you email your solutions email me a PDF file that is either computer written or a scan
of your handwritten solutions. Do not send me photos of your solution since they are usually
very difficult to read.

2See also Theorem 12, chapter 2.2 in Evans book.
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where G(x, y) is the Green’s function for D. However, we have not really proved
the formula: we only stated that the proof involved writing ∆yu(y) for f(y) in
(1) and integrate by parts twice (“arguing as in Theorem 1 in Chapter 2.2”).
In this homework I want you to prove (1) under the above assumptions.

Part 2, PDE Theory.

4. Use the methods in the proof of Theorem 10 in Chapter 2.3 to prove that if

∂u(x,t)
∂t −∆u(x, t) = 0 in D × (0, T )

u(x, t) = 0 on ∂D × (0, T )
u(x, 0) = g(x) for x ∈ D

then, for any s ∈ (0, T ),∫ s

0

∫
D

|∇u(x, t)|2dxdt+
1

2

∫
D

|u(x, s)|2dx =
1

2

∫
D

|g(x)|2dx.

You may assume that u, g and D are C∞.

5. Consider the boundary value problem, for some given g ∈ C∞c (Rn−1),

∆u(x) = 0 in Rn+
u(x′, 0) = g(x′) for x′ ∈ Rn−1. (2)

1. Show that we do not have uniqueness of solutions for this problem. That
is: prove that there exists two different solutions u(x), v(x), with two
continuous derivatives in Rn+, to (2).

2. Show that bounded solutions to (2) are unique.

Hint: If u(x) is a sloution to (2) with g(x) = 0 then

û(x) =

{
u(x) for xn ≥ 0
u(x′,−xn) for xn < 0

will be harmonic in Rn.

6. The research community has a certain tendency to exaggerate the novelty of
its research. Often papers involves some new equation or slight variation of a
know equation with a grandiose claim that their results are new.

It would not be difficult to find examples of trivialities that are presented
as novel research in many research journals, but in order not to humiliate any
of my colleagues I have made up an example of a typical problem that some
researchers would try to pass of as new science (but it would not surprise me at
all if some one actually has published the following problem as new research).

The point of this exercise is first and foremost to practise the techniques of
this course. But also to make you reflect on the difference between new results
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that are proved by standard methods and genuinely new methods. Let us get
to the problem.

The following problem is, to my knowledge entirely “new” in the sense that
I have never seen any articles, books et.c. discussing it. Given a bounded
function f ∈ C(Rn) we look for functions u ∈ C2

1 (Rn × (0, T )) ∩C(Rn × [0, T ))
and v ∈ C2

2 (Rn × (0, t)) ∩ C0
1 (Rn × [0, T )) such that

∂u(x,t)
∂t −∆u(x, t) = 0 in Rn × (0, T )

∂2v(x,t)
∂t2 −∆v(x, t) = (u(x, t))2 in Rn × (0, T )

u(x, 0) = f(x) in Rn

v(x, 0) = ∂v(x,0)
∂t = 0 in Rn.

Let us call these equations something fancy (so that we can fool journal-
editors and university review boards to believe that we are working on something
fundamental) like “non-linear coupled parabolic-hyperbolic systems of partial
differential equations” (sounds impressive enough!).

Prove the following theorem:

Theorem 1. The non-linear coupled parabolic-hyperbolic system of partial dif-
ferential equations exhibits infinite speed of propagation in the sense that there
exists functions with compact support f ∈ Cc(Rn) such that, for arbitrarily small
t > 0, the support of neither u(x, t) and v(x, t) are compact subsets of Rn.

7. Let ∆u(x) = f(x) in some domain D ⊂ Rn where u, f ∈ C∞(D). If
f(x) = 0 then the mean value formula implies that u(y) equals its average in
any ball Br(y) ⊂ D.

A similar statement should be true even if f(x) 6= 0. That is, there shold
exist a formula such that, for any ball Br(y) ⊂ D

u(y) =
1

α(n)rn

∫
Br(y)

u(x)dx+ T (f),

where T (f) is some expression involving f .
Find such a formula.


