VATTENFALL AND THE TRAN OF HE ENERGY SYSTE

The past, the present and the future

February 2017/Mikael Nordlander

CONTENT

1	History
2	Vattenfall today
3	Trends
4	Challenges
5	Pathways

CONTENT

1	History
2	Vattenfall today
3	Trends
4	Challenges
5	Pathways

1909: FIRST HYDROPOWER PLANT – OLIDAN

1922: THE "CENTRAL BLOCK" DISTRIBUTION GRID

DEVELOPMENT OF ELECTRICITY GENERATION IN SWEDEN

VATTENFALL'S HISTORY

From a domestic Swedish hydro power generator to a European energy company

	1909 The Swedish State Power Board is founded	1951 Inauguration of A hydro power	Harsprånget, plant in Sweden		1999–2009 Acquisitions in Germany, Poland and Netherlands	2010- Inauguration of UK offshore wind Thanet (300 MW)	farm
1909–1950 Part of developing the Swedish energy system		1950–2000 Organic growth and national market deregulation		20 M	000–2009 ajor expansion in Europe	2010– New strategic direction	
	1909–1916 First large hydro power plants: Porjus, Olidan, Älvkarleby, Sweden		1970–1980 Construction of 1 whereof 7 reacto	2 nu rs by	clear reactors in Sweden, Vattenfall	2011–2015 Divestments of operations in Belgium, Germany, Finland, Polar Denmark	nd and

CONTENT

1	History
2	Vattenfall today
3	Trends
4	Challenges
5	Pathways

VATTENFALL AT A GLANCE

- One of Europe's largest generator of electricity and heat
- Vattenfall has approx. 6.2 million electricity customers, 3.2 million electricity network customer and 2.1 million gas customers
- 100% owned by Kingdom of Sweden
- Operations mainly in Denmark, Finland, Germany, Netherlands, Sweden and the UK
- Main products: electricity, heat, gas, energy services
- Business operations: Production, Trading, Distribution, Sales and energy services

KEY DATA 2016 – LIFE AFTER LIGNITE

Key figures	2016 ¹	2015
Net sales (MSEK)	139,200	164,510
Underlying operating profit (MSEK) ²	21,700	20,541
Reported operating profit (MSEK)	1,300	-22,967
Profit after tax, (MSEK)	-2,200	-19,766
Cash flow from operating activities, (MSEK)	28,600	40,934
Total assets (MSEK)	409,260	462,317
Return on capital employed, %	0.5	-8.2
Return on capital employed, % excl. IAC	8.7	7.4
Number of employees (FTE)	19,935	28,567
CO ₂ emissions (Mtonnes) ³	23,1	83,8

1) Continuing operation, i.e. excl lignite operations

2) Underlying operating profit, excluding items affecting comparability.

3) Pro rata basis, corresponding to Vattenfall's share of ownership.

VATTENFALL 参

Wind power, 3%

Biomass and waste, 1%

SIX CROSS-BORDER BUSINESS AREAS (BA) REPLACE REGIONAL STRUCTURE

Heat	All heat operations including all thermal operations except for the lignite operations
Wind	All wind power operations
Customers & Solutions	Sales to end customers
Generation	All hydro and nuclear power operations
Markets	Corresponds to the former Business Division Asset Optimisation and Trading
Distribution ¹	Electricity distribution operations in Sweden and Germany

1) The distribution business is legally and functionally separated from Vattenfall's other operations.

INVESTMENT PLAN 2017-2018

The investment plan reflects a clear shift in strategy, with the majority of growth investments in wind power, solar PV and distribution grids.

Total investments 2017-2018: SEK 50bn Geographical split (SEK bn) 50 17 23% 17% Netherlands (4) Germany (11) Sweden (18) Denmark (9) 8% UK (4) Group (Other and IT) (5) 33 Growth investment by Investment split by type Wind power (SEK bn) technology: SEK 28bn Nuclear power 18 Hydro power Solar PV 31% 6% <mark>4</mark> 3 biomass, waste 20% 56% Fossil-based power 62% 6 Total Investments Non-production Wind power (17) Investments Growth investments (28) related by type of fuel Distribution grids (6) Replacement investments (7) investments Solar PV (2) Maintenance investments (16) Heat grids (1)

VATTENFALL ڪ

Other (2)

CONTENT

1	History
2	Vattenfall today
3	Trends
4	Challenges
5	Pathways

"My interest is not data, it's the world. And part of world development you can see in numbers."

- Hans Rosling

BUSINESS CASE OR BUSINESS LOGIC?

If you can't predict numbers, don't pretend you can...

US-EIA: Oil production volume forecast 2007-2016

... or at least don't base you actions on the model answering "43"...

450 ppm in 2032?

GLOBAL ENERGY SUPPLY AND DEMAND

Source: Key world energy statistics (IEA), GEA

THE MOST DEPRESSING PICTURE EVER?

2013

Estimated Renewable Energy Share of Global Final Energy Consumption, 2013

Estimated Renewable Energy Share of Global Final Energy Consumption, 2014

2014

FROM 10.1% TO 10.3% COSTS 286 BN\$ (2015)

INTERMITTENT GENERATION – EXAMPLE

Some observations

- Wind and PV production linked to price
- Flexible generation and transmission counteract on variability

CONTENT

1	History
2	Vattenfall today
3	Trends
4	Challenges
5	Pathways

HARVESTING RENEWABLE ENERGY - WHAT CAN YOU SQUEEZE OUT FROM A SQUARE METER?

All numbers in kWh/m²/year

10 TWH PER YEAR FROM...

SO THAT'S WHY...

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

VARIABILITY AND VARIABILITY - THE DIFFERENCE

EU 2000-2015: Operational change of electricity system

Source: Eirostat, EWEA (2016)

FUTURE ENERGY SYSTEM NEEDS FLEXIBILITY

CONTENT

1	History
2	Vattenfall today
3	Trends
4	Challenges
5	Pathways

SOLAR: DEAL WITH VARIABILITY AT THE SOURCE

Generation (PV)

Capacity factor: 8-12%

Consumption

Correlation: -0.1

→ Two, noisy, non-correlated grid burdens

ELECTRIFICATION IS AN ENABLER FOR SOLVING THE CLIMATE ISSUE

Vattenfall aims to play a leading role given our strong position in heating, renewable generation and our "Nordic" heritage coming from a low-emitting region

Electrification of the transport sector

 Supports e-mobility growth with resulting reduction of CO₂ as well as solving pollution and noise issues

Electrification of heating

- Energy efficiency achieved by switching from gas, oil or electric boilers to heat pumps or district heating
- Power to heat is an attractive solution to reduce the cost of heating

Electrification of the industry

 Greater use of electricity by industry can lead to fossil free steel, green concrete and boost the production of non-fossil diesel

INDUSTRY AND TRANSPORT – THE MAJORITY OF SWEDISH GHG EMISSIONS

ELECTRIFICATION CAN ELIMINATE CO2 EMISSIONS FROM SEVERAL BASIC INDUSTRY BRANCHES

HYBRIT: HYDROGEN BREAKTHROUGH IRONMAKING TECHNOLOGY

- CEOs of SSAB, LKAB and Vattenfall launched on April 4, 2016, a joint development project that, if proven feasible, can solve the root cause of the steel industry's CO₂ challenge.
- The aim is to replace the blast furnace and eliminate CO₂ emissions from ironmaking, by using hydrogen produced from "clean" electricity.
- The by-product from iron ore reduction would be water:

HYDROGEN – REDUCING CARBON FOOTPRINT OF INDUSTRY WHILE BALACING WIND AND SOLAR ELECTRICITY

BASIC INDUSTRY AND VATTENFALL CAN COOPERATE TO DRASTICALLY REDUCE CO₂ EMISSIONS – WITH ELECTRICITY

Natural resources

Thank you

mikael.nordlander@vattenfall.com

