

Semiconductor Devices Spring 2019

ROYAL INSTITUTE OF TECHNOLOGY

Lecture 6

ROYAL INSTITUTE OF TECHNOLOGY

This Lecture

- Reading
 - Chapter 4, part II, mainly 4.12 and 4.13
- Concepts:
 - Solar cells, photovoltaic devices
 - Light-emitting diodes (LED)

Blue LEDs The Nobel Prize in Physics 2014

Photo: Yasuo Nakamura/Meijo University

Prize share: 1/3

Photo: Nagoya University Hiroshi Amano Prize share: 1/3

Photo: Randall Lamb, UCSB Shuji Nakamura Prize share: 1/3

The Nobel Prize in Physics 2014 was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura *"for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources"*.

Part II: Application to Optoelectronic Devices 4.12 Solar Cells

•Solar Cells is also known as photovoltaic cells.

•Converts sunlight to electricity with 10-30% conversion efficiency.

- •1 m² solar cell generate about 150 W peak or 25 W continuous power.
- •Low cost and high efficiency are needed for wide deployment.

4.12.1 Solar Cell Basics

Slide 4-5

Direct-Gap and Indirect-Gap Semiconductors

•Electrons have both particle and wave properties.

•An electron has energy E and wave vector k.

4.12.2 Light Absorption

A thinner layer of direct-gap semiconductor can absorb most of solar radiation than indirect-gap semiconductor. But Si...

Slide 4-7

4.12.3 Short-Circuit Current and Open-Circuit Voltage

If light shines on the N-type semiconductor and generates holes (and electrons) at the rate of G s⁻¹cm⁻³,

$$\frac{d^2 p'}{dx^2} = \frac{p'}{L_p^2} - \frac{G}{D_p}$$

If the sample is uniform (no PN junction), $d^2p'/dx^2 = 0 \rightarrow p' = GL_p^2/D_p = G\tau_p$

Slide 4-8

Solar Cell Short-Circuit Current, I_{sc}

Assume very thin P+ layer and carrier generation in N region only.

G is really not uniform. L_p needs be larger than the light penetration depth to collect most of the generated carriers.

Slide 4-9

Open-Circuit Voltage

•Total current is I_{SC} plus the PV diode (dark) current:

$$I = Aq \frac{n_i^2}{N_d} \frac{D_p}{L_p} (e^{qV/kT} - 1) - AqL_p G$$

•Solve for the open-circuit voltage (V_{oc}) by setting I=0(assuming $e^{qV_{oc}/kT} >>1$) $0 = \frac{n_i^2}{N_d} \frac{D_p}{L_p} e^{qV_{oc}/kT} - L_p G$

$$V_{oc} = \frac{kT}{q} \ln(\tau_p G N_d / n_i^2)$$

How to raise V_{oc} ?

Slide 4-10

4.12.4 Output Power

A particular operating point on the solar cell I-V curve maximizes the output power (I ×V).

Output Power =
$$I_{sc} \times V_{oc} \times FF$$

•Si solar cell with 15-20% efficiency dominates the market now

•Theoretically, the highest efficiency (~24%) can be obtained with 1.9eV >Eg>1.2eV. Larger Eg lead to too low Isc (low light absorption); smaller Eg leads to too low Voc.

•*Tandem solar cells* gets 35% efficiency using large *and* small Eg materials tailored to the short and long wavelength solar light.

4.13 Light Emitting Diodes and Solid-State Lighting

Light emitting diodes (LEDs)

- LEDs are made of compound semiconductors such as InP and GaN.
- Light is emitted when electron and hole undergo *radiative recombination*.

Slide 4-12

Direct and Indirect Band Gap

Direct recombination is efficient as k conservation is satisfied.

Direct recombination is rare as k conservation is not satisfied

4.13.1 LED Materials and Structure

LED wavelength (
$$\mu$$
 m) = $\frac{1.24}{\text{photon energy}} \approx \frac{1.24}{E_g(eV)}$

Slide 4-14

4.13.1 LED Materials and Structure

	E _g (eV)	Wavelength (µm)	Color	Lattice constant (Å)
InAs	0.36	3.44		6.05
InN	0.65	1.91	infrared	3.45
InP	1.36	0.92		5.87
GaAs	1.42	0.87	Red	5.66
GaP	2.26	0.55	Green	5.46
AlP	3.39	0.51		5.45
GaN	2.45	0.37	↓	3.19
AIN	6.20	0.20	UV	3.11

Light-emitting diode materials

compound semiconductors

binary semiconductors:- Ex: GaAs, efficient emitter

ternary semiconductor : - Ex: $GaAs_{1-x}P_x$, tunable E_g (to vary the color)

quaternary semiconductors: - Ex: AlInGaP, tunable E_g and lattice constant (for growing high quality epitaxial films on inexpensive substrates)

Common LEDs

Spectral range	Material System	Substrate	Example Applications	
Infrared	InGaAsP	InP	Optical communication	
Infrared -Red	GaAsP	GaAs	Indicator lamps. Remote control	
Red- Yellow	AlInGaP	GaA or GaP	Optical communication. High-brightness traffic signal lights	
Green- Blue	InGaN	GaN or sapphire	High brightness signal lights. Video billboards	
Blue-UV	AlInGaN	GaN or sapphire	Solid-state lighting	
Red- Blue	Organic semicon- ductors	glass	Displays	

Slide 4-16

4.13.2 Solid-State Lighting

luminosity (lumen, lm): a measure of visible light energy normalized to the sensitivity of the human eye at different wavelengths

Incandescent lamp	Compact fluorescent lamp	Tube fluorescent lamp	White LED	Theoretical limit at peak of eye sensitivity (λ =555nm)	Theoretical limit (white light)
17	60	50-100	90-?	683	~340

Luminous efficacy of lamps in lumen/watt

Organic Light Emitting Diodes (OLED) :

has lower efficacy than nitride or aluminide based compound semiconductor LEDs.

Terms: luminosity measured in lumens. luminous efficacy,

Stimulated emission: emitted photon has identical frequency and directionality as the stimulating photon; light wave is amplified.

4.14.1 Light Amplification in PN Diode

4.14.2 Optical Feedback and Laser

Laser threshold is reached (light intensity grows by feedback) when

 $R_1 \times R_2 \times G \ge 1$

•R1, R2: reflectivities of the two ends
•G : light amplification factor (gain) for a round-trip travel of the light through the diode

Light intensity grows until $R_1 \times R_2 \times G = 1$, when the light intensity is just large enough to stimulate carrier recombinations at the same rate the carriers are injected by the diode current.

4.14.2 Optical Feedback and Laser Diode

• Distributed Bragg reflector (DBR) reflects light with multi-layers of semiconductors. •Vertical-cavity surface*emitting laser (VCSEL)* is shown on the left. •Quantum-well laser has smaller threshold current because fewer carriers are needed to achieve population inversion in the small volume of the thin small-*Eg* well.

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 4-21

4.14.3 Laser Applications

Red diode lasers: *CD*, *DVD reader/writer*

Blue diode lasers: Blu-ray DVD (higher storage density)

1.55 µm infrared diode lasers: Fiber-optic communication

4.15 Photodiodes

Photodiodes: Reverse biased PN diode. Detects photogenerated current (similar to Isc of solar cell) for optical communication, DVD reader, etc.

Avalanche photodiodes: Photodiodes operating near avalanche breakdown amplifies photocurrent by impact ionization.