EP1100 Data Communication and Computer Networks

Gunnar Karlsson

KTH School of Electrical Engineering and Computer Science

Today's lecture

- Overview
 - From data communication to computer networks
 - Network functions
- Applications and user requirements
- Outline of the course

Information, data and communication

- Define the terms information, data and communication
 - Take a few minutes to think on your own
 - Discuss two and two for five minutes
 - Compare notes with another pair
 Discuss and refine for five minutes

• ... Data

Negative entropy—information reduces uncertainty

Information, data and communication

- Representation of information, often represented in binary digits, bits
 - One bit may have values 0 and 1

An answer to a specific question

Communication

•

The process of sharing data

Information—many meanings

- Telecommunication
 - Communication at a distance
 - "Tele" is "far" in Greek
 - Historically speech by telephony and text by telegram
 - Sound, pictures, video, text, sensor data, ... everything?

Information – a technical definition

- Information represents one alternative
 - To represent one of N alternatives requires
 [log₂N] bits
 - Example: the letters in the Swedish alphabet can be represented by 5 bits (2⁵ = 32)
- Context known by sender and receiver
 - The alternatives are well defined
 - Knowing that given five bits represent a letter from the Swedish alphabet, for instance
 - Could take much data to communicate context!

Information and information rate

- Time independent information
 - An amount of bits [b] or bytes (8 bits) [B]
- Time dependent information
 - Might be sampled continuous signals
 - Shannon-Nyquist criterion: twice the highest frequency of the signal
 - Quantized to a finite number of signal levels
 - A bit rate (or data rate) in bits per second [b/s, bit/s, bps]
 - Sampling frequency [1/s] × bits per sample [b]
- Prefices: kilo (k) 10³, mega (M) 10⁶, giga (G) 10⁹, tera (T) 10¹², peta (P) 10¹⁵, exa (E) 10¹⁸, zetta (Z) 10²¹, yotta (Y) 10²⁴, ... googol 10¹⁰⁰

Data communication

- Definition: Sending and receiving data
- What *functions* are needed to get two computers to communicate?
 - Discuss two and two for five minutes
 List functions
 - Compare notes with another pair for five minutes
 - Discuss and merge lists

Data Communication

- 1. Some form of transmission medium for a signal
 - Electric signal over a electric cable
 - Light signal in an optical cable or free space
 - Radio signal in wave guide or free space
- 2. Data is transferred by the signal
 - Forming the signal to represent data at sender
 - Different amplitudes, frequencies and phases of the signal
 - Receiver detects signal form and maps to data values
 - Data is recreated at the receiver
 - Errors due to... what?
 - Attenuation, noise, distortion
- 3. Data communication functions for links
 - Signals regeneration and amplification to reduce errors
 - Framing to mark beginning and end of message
 - Separate idle link from noise
 - Flow control to match sending and receiving data rates
 - Handling of errors
- \rightarrow Delivery of data *frames* from point to point over a *link*

Computer networks

- Definition: Transferring data over a network between computers
- What additional *functions* are needed to get *any* two (or more) computers to communicate?
 - Discuss two and two for five minutes
 - List functions
 - Compare notes with another pair for five minutes
 - Discuss and merge lists

Network functions

- 1. Addressing to identify receiver, sender and network nodes
 - Unique identifier within the network
 - Could point to where the device is located (a locator)
- 2. Routing to find a path between sender and receiver
 - Learn the topology (map) of the network
 - Compute the best route through the network
- 3. Switching to forward frames from incoming to outgoing link
 - Sort frames to different outputs according to destination
 - Sorting rule given by routing information
- 4. Buffering and scheduling to store frames and decide which to send
 - Compensate for differences in speed
 - Multiplexing of frames from different inputs to each output
- 5. Management and network operations to supervise the network
- \rightarrow Delivery of data *frames* from any point to any point over a *network*

Network services

- Definition: providing communication to processes
- What additional *functions* are needed to get any two (or more) *processes* to communicate?
 - Discuss two and two for five minutes
 o List functions
 - Compare notes with another pair for five minutes
 - Discuss and merge lists

Network services

- 1. Name service to find address of the other party
- 2. Multiplexing of data from processes onto the network connection
 - The address only identifies the computer, not the application
 - Segmentation and reassembly of application data
- 3. Flow and congestion control and error handling
 - Similar to data communication for a link, now for a virtual link (a route)
 - Congestion relates to overload in the network; flow control to the receiver
- 4. Security, integrity and privacy of communication to make trustworthy services
- \rightarrow Delivery of data from any process to any process over a *network*

Applications

- The use of the communication to humans or other systems
 - To send or to fetch data
 - Defines the purpose of the communication
 - Examples

0

- Email Standardized
- o Web
- Spotify _ Proprietory
 - Proprietary
- ₀ Skype _
- Applications and users put requirements on network services

Applications

- Applications and users put requirements on network services
- What service requirements should be considered when users and applications communicate?
 - Discuss two and two for five minutes
 - List metrics and quality aspects
 - Compare notes with another pair for five minutes
 - Discuss and merge lists

EP1100 Data communication and computer networks

Application and user requirements

- Quality
 - Delay (a k a latency)
 - Data loss and errors
 - Reliability
 - Availability
 - Security
 - Privacy

- Cost
 - Information
 - The contents
 - Eg pay-per-view
 - Service
 - o Resources
 - Network access
 - Connection time
 - Data volume
 - Management
 - Booking
 - Directory services
 - Security

Protocol and architecture

- System functions bundled into protocols that are organized in layers
 - Peer-to-peer processes between protocols at the same layer in different nodes
 - Abstraction of concerns: a lower layer provides a service to an upper layer
- Communication between adjacent layers in the same node
 - Well-defined interfaces that are part of the protocol specification
 - Data is transferred by passing application and network data through layers
 - down (sending) or up (receiving)

EP1100 Data communication and computer networks

Summary

- Data communication provides transmission of data frames over a link
- Computer networks provide network services to computers
- Protocol and architecture
- Applications and user requirements

Goals with the course

• Learn principles

- Data communication
 - Transmission
 - Flow and error control
 - Multiplexing
 - Medium access
- Networking
 - Addressing and routing
 - Switching and buffering
- End to end protocols
 - Multiplexing
 - Flow and congestion control
 - Applications
- Network architecture
 - Protocols How system functions are performed
 - How the protocols provide services
- Learn about examples of actual networks
 - IEEE 802 local area networks
 - TCP/IP and the Internet
- To build a basis for further networking courses and for application domains

Further courses in networking

- Intermediate
 - Internetworking, EP2120
 - Wireless Networks, EP2950
 - Queuing Theory and Teletraffic Systems, EP2200
 - Management of Networks and Networked Systems, EP2300
 - Networked System Security, EP2500
- Advanced
 - Principles of Wireless Sensor Networks, EL2745
 - Performance Analysis of Communication Networks, EP2210
 - Advanced Networked Systems Security, EP2510
- Degree Project in Communication Networks, Second Level, EP240X

Course structure

- Lectures
 - Overview of material, emphasis on understanding
 - Interactive, can be tailored to wishes (if expressed!); class exercises
- Recitations
 - Solving problems
 - Opportunity to clarify concepts
- Continuous examination
 - Four self studies: need to complete and pass all
 - Bonus points for hand-ins *not* requiring reworking
 - Four case studies: need to complete and pass all
 - Groups of up to three students per group
 - Five mini-examinations: cumulative result gives course grade
 - ETCS grades A to E passing, Fx and F fail
 - Students with Fx may pass course with grade E based on extra examination
 - Bonus points can only be used to improve grade E to B during this course round
 - Mini-exams 1 and 5 are mandatory since they check first and last self study exercises
 - Mini-exam 5 is cumulative over entire course

Course structure

- Three laboratory assignments
 - Hands-on work in selected topics
 - Preparation for the laboratory with homework
- Final exam for those not passing continuous examination
 - Friday March 15 from 14:00 to 18:00.
 - Five problems of 10 points each
 - Tests deep understanding of concepts, algorithms and technologies
 - No simple mapping of lectures and book chapters to problem
 - ETCS grades A to E passing, Fx and F fail
 - Students with Fx may pass course with grade E based on extra examination
 - Bonus points valid for those who have passing grade

Online material, course books and articles

- EP1100 i Scalable Learning, (enrollment key QTFWF-78400)
- Larry Peterson, Bruce Davie, *Computer Networks: A Systems Approach*, 2012
- Olivier Bonaventure, Computer Networking: Principles, Protocols and Practice
- Jean Walrand, Shyam Parekh, Communication Networks: A Concise Introduction
- Dimitri Bertsekas, Robert Gallager, Data networks, 1992
- Gunnar Karlsson, *Modern telekommunikation*, Studentlitteratur, 1997 (utdrag)
- Andrew Russel, The internet that wasn't, *IEEE Spectrum*, August 2013

Extra videos and voluntary reading

- Andrew Tanenbaum och David Wetherall, Computer Networks 5e: Video lectures by David Wetherall
- Paul Baran, The beginnings of packet switching: some underlying concepts, IEEE Communications Magazine, Volume: 40, Issue: 7, Pages: 42 48, 2002
- Louis Pouzin och Hubert Zimmermann, A tutorial on protocols, Proceedings of the IEEE, Volume: 66, Issue: 11, Pages: 1346 1370, 1978
- Hamed Haddadi och Olivier Bonaventure (editors), *Recent Advances in Networking*, ACM SIGCOMM eBook, Volume 1, August 2013
- Benedict Carey, How we learn: *The surprising truth about when, where and why it happens, Random House*, 2014: Appendix: Eleven essential questions.

Your Responsibilities

- Continuous attention
 - Active learning! Continuous examination
 - Much to read!
 - Time to let it sink in
- Important messages in Canvas
 - Also given at the lectures
 - You are responsible for staying updated!
- Be on time for the exams in class, for mini-exams, oral presentations and obey deadlines for the handins
- Course responsible can be reached through email at gk@kth.se subject EP1100
- Course evaluation