
Johan Karlander, KTH, EECS

Teoritenta i Algoritmer (datastrukturer) och komplexitet
för KTH DD2350–2352 2019-05-31, klockan 8.00–11.00

Solutions

No aids are allowed. 12 points are required for grade E, 15 points for grade D and 18 points
for grade C. If you have done the labs you can get up to 4 bonus points. If you have got bonus
points, please indicate it in your solutions.

If you are registered on DD2350, 13 points are required for grade E. Bonus points from DD2350
are counted in the exam.

In all problems you can assume P 6= NP .

1. (8 p)

Are these statements true or false? For each sub-task a correct answer gives 1 point and
an answer with convincing justification gives 2 points.

(a) The problem of deciding if an undirected graph is bipartite is NP-Complete.

FALSE. A variant of BFS solves this in polynomial time. Since P 6= NP we get that
an NP-Complete problem can not be solved in polynomial time. So this problem
can not be NP-Complete.

(b) If a Divide and Conquer-algorithm has a time complexity T (n) given by the recur-
sion formula

T (n) = 3T (
n

3
) + cn

then T (n) ∈ O(n3).

TRUE. The Master Theorem gives that T (n) ∈ O(nlog3 3) = O(n). Since O(n) ⊂
O(n3) we get T (n) ∈ O(n3).

(c) It is possible to construct a Turing Machine that decides if there are negative cycles
in a directed graph.

TRUE. We can find algorithms that solve this problem. (For instance, one is given
in the lecture notes.) Church’s Thesis says that any algorithm can be implemented
on a Turing Machine. So there must be a Turing Machine (perhaps a complicated
one) that solves this problem.

(d) All problems that are in NP are also in P.

FALSE. In fact, it is the other way. All problems in P are also in NP.

2. (3 p)

Let us assume that we have a directed graph G and we use the Ford-Fulkerson algorithm
to find maximal flows between s and t in G.

1

(a) If all capacities for the edges are integers, then the maximum flow must have an
integer value. Carefully explain why.

Solution:We can use induction. In fact we show something stronger. At each stage
in the algorithm, the flow in each edge is an integer value. In the next stage we find
an augmenting path and find the smallest capacity δ along this path. This capacity
has the form c(e) − f(e) or the form f(e) for some edge e in the path. So δ must
be an integer. The algorithm increases the flow with δ on the path. This means the
the flow increases or decreases with δ on each edge in the path. So the flow is still
an integer in each edge. Since the flow has integer value in each edge, the maximum
flow given by the algorithm must also have integer value.

(b) We say that two directed paths are edge disjoint if there is no edge belonging to
both paths. Let us assume that there is a set of m pairwise edge disjoint paths
between s and t and m is maximal in this sense. Let us also assume that all edges
have capacity 1. Then the maximum flow must have value m. Carefully explain
why.

Solution: If we can find m pairwise edge disjoint paths we can obviously release
a flow of size 1 on each path. This gives us a flow of size m. Let M be the size of
a maximal flow. The obviously m ≤ M . Now, on the other hand, assume that we
run Ford-Fulkerson’s algorithm and get a flow M . From a. we know that the flow
in each edge must be 0 or 1. Remove all edges with flow 0. Among the remaining
edges we still have a flow of size M −1. We can obviously find a path from s to t in
this graph. Remove all edges in this path. Then we still have a flow of size M − 1.
(Here we use that the flow in each egde is 1.) Do this recursively. In this way we
find a set of M edge disjoint paths. So m ≥M . This gives us m =M .

3. (3 p)

In the graph below the nodes are problems. An arrow like A→ B indicates that there is
a polynomial time reduction fram A to B. Observe that there could be more reductions
than the ones indicated.

Let us assume that C is NP-Complete. Answer these questions:

a. Which problems must be NP-Complete?
b. Which problems could be outside NP?
c. Given P 6= NP, which problems could then be in P?

Solution: The main facts to use are that if A→ B, then if B is in NP then A must be
in NP and if A is NP-Hard then B must be NP-Hard

(a) C,D and E. These problems are such that you can find a path from C to them and
a path from them to C. This guaranties that the problems are both in NP and
NP-Hard.

2

(b) B and F. A problem could be outside NP if there is no path from the problem to
a known NP-problem.

(c) A and F. A problem could be in P is there is no path from a known NP-Hard
problem leading to the problem.

4. (3 p)

We can define a problem NEF (Not Equivalent Formulas) that takes two propositional
logic formulas F1 and F2 as input. The goal is to decide if the formulas are not equivalent.
So a yes answer means that the formulas are not equivalent.

(a) Show that this problem is in NP.

Solution: A Yes-certificate is a valuation (set of values for the variables) such that
F1 and F2 have different truth values. Given a suggested valuation we can compute
the truth values for the formulas in time that is polynomial in the sizes of the
formulas. (But finding such a valuation could of course be more complicated.)

(b) Show how you can reduce SAT to this problem. More specific, given an instance φ
to SAT, show how you can choose two formulas F1, F2 such that φ is satisfiable if
and only if F1 and F2 are not equivalent.

Solution: Given φ we can set F1 = φ and F2 = p1 ∧ ¬p1. We see that this F2 is
unsatisfiable. So if φ is satisfiable then F1 and F2 are not equivalent and if F1 and
F2 are not equivalent then F1 = φ is satisfiable. (Observe that any unsatisfiable
formula is equivalent to p1 ∧ ¬p1.)

Extra question for the sophisticated: What is the reason for choosing ”not equivalent”
instead of the perhaps more natural ”equivalent”. You don’t have to answer this question
and answering gives no points but it could be good to think about this.

Answer: If we use equivalent then we can find a valuation that is a No-certificate. But
it is not at all obvious that we can find Yes-certificates. The problem with Equivalent
belongs to a class called co-NP. It is not known if NP = co-NP or not.

5. (3p)

(a) In the course book and in the lecture notes there is a description of an approximation
algorithm for the problem VERTEX COVER. Describe the algorithm. What is the
approximation quotient?

Solution: For a description of the algorithm, see the lecture notes. The approxi-
mation quotient is B = 2.

(b) Instead of using this algorithm we might want to use another simple greedy algo-
rithm: Given G, choose a vertex v of maximal degree. Put v in the vertex cover.
Remove v and all edges on v. This gives us a new graph G′. Use the previous step
recursively to get a vertex cover.

3

Solution: For instance, we can take the graph with V = {a, b, c, d, e, f, g} and
E = {(a, b), (a, c), (a, d), (b, e), (c, f), (d, g). In this case, the algorithm will choose a
and 4 more vertices giving a vertex cover of size 4. But the optimal size of a vertex
cover is 3.
Give an example when this simple algorithm does not give an optimal size vertex
cover.

(c) A K-regular graph is a graph where each vertex has degree K. Let us assume
that we have K-regular graphs with K fixed. Show that in this case the algorithm
described in b. approximates VERTEX COVER within a factor B. Find a value
for B as a function of K.

Solution: The essential thing here is to find a lower bound for the size of an optimal
vertex cover. First, we observe that in a K-regular graph we have |E| = K

2 |V |. Let
OPT be the size of a minimal vertex cover. Since a vertex covers K edges (and
no more) we have OPT ≥ 1

K |E| =
3
2K |V |. Let APP be the size of the vertex

cover given by our algorithm. We want to find an upp bound for APP
OPT . We have

APP
OPT ≤

2K
3

APP
|V | . An obvious estimate is APP ≤ |V |. This gives us B ≤ 2K

3 . (Maybe
stricter bounds can be found.)

4

