
Algorithms and Complexity
2019

Mästarprov 2: Complexity

Mästarprov 2 should be solved individually in written form and pre-
sented orally. No collaboration is allowed.

Written solutions should be handed in latest on Thursday, April 25th 23.00,
on Canvas.

Mästarprov 2 is a mandatory and graded part of the course. The test consists
of four tasks. The test is roughly graded as follows: Two tasks correctly solved
give an E. Three tasks correctly solved give a C and all tasks correctly solved
give an A. You can read more about the grading criteria and the final grade on
the course web page. The report should be written in English.

In all problems you should give an analysis of the time complexity of your
algorithm and you should be able to argue for its correctness.

1. Experimental Cooking

We want to try some experimental cooking. We have a list of n possible in-
gredients and we want to mix them. But they cannot be mixed in any crazy
way, some don’t go well with others. We write down an n× n matrix D called
the discord matrix. The element Dij is a real number between 0 and 1 where
1 means ”i and j don’t go together at all” and 0 means ”i and j go together
perfectly”. When we now try to experiment we want to choose as many ingre-
dients as possible, but at the same time have as little total discord as possible.
We define total discord as the sum all discords between the chosen ingredients.
We define the following problem:

EXPERIMENTAL COOKING
Input: An n× n matrix D with real numbers between 0 and 1. An integer k.
A real number t.
Goal: Is there a subset S of {1, , ..., n} of size k such that if dsum is the sum of
all Dij such that i < j, i ∈ S, j ∈ S then dsum ≤ t?

So for instance, if

D =

0.0 0.4 0.2 0.9 1.0
0.4 0.0 0.1 1.0 0.2
0.2 0.1 0.0 0.8 0.5
0.9 1.0 0.8 0.0 0.2
1.0 0.2 0.5 0.2 0.0

and S = {1, 3, 5} then dsum = 0.2 + 1.0 + 0.5 = 1.7.

Show that this problem is NP-Complete. (Hint: You can use INDEPENDENT
SET.)

1

2. A Variant of SUBSET SUM

We know that the problem SUBSET SUM, i.e., given positive integers
a1, a2, ..., an,M , decide if there is a subset sum equal to M is NP-Complete.
But maybe we could get a simpler problem if we look at a ”softer” variant:

Input: Positive integers a1, a2, ..., an. A positive integer M .
Goal: Is there a subset of a1, a2, ..., an with sum S such that |M −S| < d where
d = blogMc?

We might now ask if this problem, we can call it ALMOST SUBSET SUM,
can be solved in polynomial time. But we can prove that it is NP-Complete
by reducing the ordinary SUBSET SUM problem to ALMOST SUBSET SUM.
Your task is to show how such a reduction can be done. We give some hints:
Assume that we have an instance a1, a2, ..., an,M of SUBSET SUM. We make
a special instance a′1, a′2, ..., a′n,M ′ of ALMOST SUBSET SUM.
How should a′1, a′2, ..., a′n,M ′ be chosen so that the instance of SUBSET SUM
has a solution if and only if the instance of ALMOST SUBSET SUM has a
solution?

3. Party Planning

In this problem we imagine that you are planning a party for n persons.
They are to be placed at different tables. You want everyone to be comfortab-
le and therefore think it would be a good idea if everyone seated at a table
knows everyone else at the table. So imagine that you have a list that looks
like: {(p1, p3), (p4, p7), · · · (pi, pj) · · · } where a pair (pi, pj) means that persons
pi and pj know each other. We assume that this relation is symmetrical but not
necessarily transitive. You have k tables available. We assume that the tables
are large so that each table has space for n persons, if you want. Your problem is
to decide if, given the list, it is possible to find a seating arrangement as descri-
bed above. Since you are a computer scientist you naturally want to solve the
general problem for any lists and any number k of tables. But then you realize
that this problem seems hard. Decide if this problem is NP-Complete or not by
either giving a proof of NP-Completeness or giving an efficient algorithm that
solves the problem

4. A variant of CNF-SAT

Let φ = c1 ∧ c2 ∧ · · · ∧ cm be a CNF formula. The CNF-SAT problem is
to decide if all m clauses can be satisfied at the same time. A perhaps more
complicated problem is to decide if there is a set of values for the variables so
that exactly k clauses are satisfied where k is an integer such that 0 < k ≤ m.
We can see that if we set k = m we get the standard CNF-SAT problem.

2

This new problem is NP-Complete. Let us nevertheless assume that we have an
algorithm F (φ, k) that decides the problem. Such an algorithm can probably
not be efficient, but could still be useful. But let us assume that we are not just
interested in knowing if it is possible to satisfy exactly k clauses but we want to
know how we can do it. Let us assume that there are n variables in the formula.
Your task is to design an algorithm G(φ, k) that gives us a valuation (values
for all variables) such that exactly k clauses are satisfied (if such a valuation
exists). The algorithm G can use calls F (φ′, i) repeated times. (φ′ might differ
from φ and i might differ from k.) But the algorithm should use F no more
than q(n,m) times where q(n,m) is polynomial in n and m. Furthermore, if we
assume that the time complexity of F (φ, k) is T (n,m), the time complexity for
G(φ, k) should be p(n,m) + q(n,m)T (n,m) where p(n,m) is polynomial in n
and m. Design such an algorithm G and find p and q.

3

