
Johan Karlander, KTH, EECS

Teoritenta i Algoritmer (datastrukturer) och komplexitet

för KTH DD2350–2352 2018-05-31, klockan 14.00–17.00

Solutions

No aids are allowed. 12 points are required for grade E, 15 points for grade D and 18 points
for grade C. If you have done the labs you can get up to 4 bonus points. If you have got bonus
points, please indicate it in your solutions.

If you are registered on DD2350, 13 points are required for grade E. Bonus points from DD2350
are counted in the exam.

1. (8 p)
Are these statements true or false? For each sub-task a correct answer gives 1 point and
an answer with convincing justification gives 2 points.

(a) Dijkstra’s algorithm cannot generally be used with negative edge weights.

TRUE. You can find a simple example with three nodes a, b, c and edges (a, b), (a, c), (b, c)
with w(a, b) = 3, w(a, c) = 2, w(b, c) = �2 where Dijkstra would give the wrong
distance from a to c.

(b) There are known efficient algorithms for deciding if a propositional logic formula �

is a tautology (always true) or not.

FALSE. A formula � is a tautology if and only if ¬� is not satisfiable. So we can
reduce the problem to SAT.

(c) The problem of deciding if a Turing machine M run on input x halts in exactly
1000 steps is undecidable.

(d) FALSE. We can just run the algorithm for 1000 steps and see if it has halted. This
is clearly a decidable problem.

(e) If a problem can be solved by an algorithm that uses polynomial time, it can be
solved by an algorithm that uses polynomial space.

TRUE. In fact, the polynomial time algorithm must be polynomial space too, since
it cannot change more than one bit at each time step.

2. (3 p)
Describe how Prim’s algorithm works. This is an efficient algorithm. Explain what an
efficient algorithm is and why this algorithm is efficient.

Solution: See course book or lecture notes. The time complexity is O(|E| log |V |). That
an algorithm is efficient means that it’s time complexity is polynomial in input size. In
this problem we can take the input size as Max(|V |, |E|). Then, clearly, this algorithm
is efficient.

1

3. (3 p)
In the graph below the nodes are problems. An arrow like A ! B indicates that there is
a polynomial time reduction fram A to B. Observe that there could be more reductions
than the ones indicated.

Let us assume that C is NP-Complete. Answer these questions:

a. Which problems must be NP-Complete?
b. Which problems could be outside NP?
c. Given P 6= NP, which problems could then be in P?

Solution:

(a) C,D,E,F (X must be NP-Complete if there is a directed path from X to C and a
durected oath from C to X.)

(b) B, G, H. (X can be outside NP if there is no edge from X to any NP problem.)
(c) A, B, H. (X can be in P if there is no edge from any NP-Complete problem to X.)

4. (3 p)
Let us assume that we have a sequence S of n integers. We want to find the longest
strictly increasing subsequence of S. The numbers do not have to be consecutive. For
instance, if:

S = {3, 0, 5, 2, 3, 3, 7, 1, 8, 0}

the longest strictly increasing subsequence has length 5. Use Dynamic Programming to
solve this problem. More exactly,

a. Define suitable subproblems.
b. Define an array that contains the solutions to the subproblems.
c. Find a recursion formula that gives the solution.

2

Observe that you don’t really have to find the longest subsequence, just the length of it.

Solution: For a suitable solution see lecture notes to lecture 5.

5. (3p)
In this problem we study an optimization variant of SUBSET SUM. We are given a set
x1, x2, ...xn of positive integers and a positive integer M . We can assume that at least
one of the xi are < M . We are trying to find a subset sum � M but as small as possible,
i.e. lager than or equal to M but as close to M as possible.

Now look this greedy algorithm:

First sort the integers in increasing order. Then we find the largest k such thatPk�1
i=1 xi < M and

Pk
i=1 xi � M . We then return

Pk
i=1 xi.

(a) Show that this algorithm can be implemented as an algorithm that is polynomial
in the input size.

(b) Show by an example that this algorithm sometimes fail to give the optimal solution.
(c) There might, however, be some hope that the algorithm could work as an ap-

proximation algorithm, i.e., there might be some B > 1 such that the algorithm
approximates within B. Decide if the algorithm is an approximation algorithm with
B = 3

2 or not.

Solution: We can use a for-loop and compute the partial sums. We then compare the
sums to M . Adding and comparing are O(logM) operations. So the time complexity
will be O(n logM).
If we set M = 10 and have x1 = 1, x2 = 10, the algorithm will not generate the optimal
solution.
If we set M = 10 and have x1 = 9, x2 = 10, the algorithm returns the number 19. The
optimal value is 10. So for this instance we get B = 19

10 > 1, 5. So this example show
that we cannot always approximate within 1,5.

3

