
Johan Karlander, KTH, CSC

Teoritenta i Algoritmer (datastrukturer) och komplexitet
för KTH DD1352–2352 2017-05-29, klockan 8.00–11.00

No aids are allowed. 12 points are required for grade E, 15 points for grade D and 18 points
for grade C.

If you have done the labs you can get up to 4 bonus points. If you have got bonus points,
please indicate it in your solutions.

1. (8 p)

Are these statements true or false? For each sub-task a correct answer gives 1 point and
an answer with convincing justification gives 2 points.

a. It is possible to tell in time O(|E(G)|) if a graph is connected or not.

TRUE. You can use DFS or BFS for this and they both have time complexity
O(|E|).

b. Any problem that can be solved by a non-deterministic turing machine can also be
solved by a deterministic turing machine.

TRUE. A non-deterministic turing machine uses random choices during a compu-
tation. We can simulate all possible choices on a deterministic turing machine and
see if some choice leads to an accepting computation.

c. It is always impossible to find shortest paths in graphs when there exist edges with
negative edge-weights.

FALSE. It will only be problems for graphs with negative weight directed cycles.

d. The problem PARTITIONING can be reduced to the problem SAT.

TRUE. The problem PARTITIONING is an NP-problem and Cook’s theorem tells
us that all NP-problems can be reduced to SAT.

2. (3 p)

Describe in detail how Mergesort works. Analyze the time complexity of the algorithm.

Solution: See lecture notes or course book. For the complexity analysis you can either
use the Master Theorem with a = b = 2 and f(n) = n which gives time complexity
O(n log n) or do a direct analysis.

3. (3 p) In this problem we consider an undirected, connected graph G. It has positive
weights on all edges.

1

(a) Describe an algorithm for finding a minimal spanning tree in G.
Solution: Use Kruskal’s algorithm or Prim’s algorithm. You should provide a
description of either of them.

(b) Let s be a vertex in G. Let T be a spanning tree in G such that for each vertex v
in G, the unique s − v path in T is a shortest path from s to v in G. Describe an
algorithm that finds such a tree T .
Solution: Use Dijkstra’s algorithm with s as start node. (You should describe the
algorithm).

(c) Must T (as given in part b) be a minimal spanning tree? Give proof if you think
so or give a counter example if you think it is not so.
Solution: The answer is NO. A very simple counter-example is to take a graph
with three nodes s, a, b and set wsa = 2, wsb = 2, wab = 1. The shortest path tree
will have edges (s, a), (s, b) and weight 4, but the minimal spanning tree has eight
3.

4. (3 p) Carefully answer these questions about NP-problems:

(a) Explain why all problems in P are in NP.
Solution: There are several ways of showing this. One is to use the definition
that problems in NP are problems that can be decided by non-deterministic turing
machines that run in polynomial time. Problems in P can be decided by determi-
nistic polynomial time turing machines. Since deterministic turings machines are
special cases of non-deterministic turing machines, it follows that P ⊆ NP .

(b) Let us assume A is a problem that is known to be NP-complete and B is a problem
that is in NP. If we want to show that B is NP-complete, should we make a reduction
from A to B or from B to A? Explain why.
Solution: You should reduce from A to B. We know that B is in NP. We have to
show that evere NP-problem C can be reduced to B. If we can show that A ≤ B,
then since C ≤ A, we get C ≤ B. Observe that it is pointless to show B ≤ A since
we already know this from Cook’s theorem.

(c) Explain why we demand that the reductions should have polynomial time complex-
ity.
Solution: Let us assume that we allowed the reductions to be exponential. It can
be shown that any NP-problem can be solved in exponential time. Let A be an
NP-complete problem and B any problem in P. Let F be an algorithm for deciding
A. Given an instance x to A we can define a reduction R(x) like this: We run F (x).
If the answer us yes we output some yes-instance to B. If the answer is nu we output
some no-instance to B. Some we can reduce A to B. In fact, we can reduce any
NP-problem to any other NP-problem and any problem would be NP-complete. To
avoid this anomalous behavior we demand that the reductions must be polynomial
time.

2

5. (3p)

The problem INDEPENDENT SET is an NP-complete problem. The corresponding
optimization problem is to find the size of a maximal independent set in a graph G. It
can be shown that for general graphs this problem can not be approximated within any
factor 1 < B <∞. But if we know that the graphs we consider have a certain maximum
degree D (that is, D is a bound valid for all graphs we consider), we can construct an
approximation algorithm that finds an independent set by choosing vertices with low
degree. Describe such an algorithm in detail, analyze it’s time complexity and show that
it approximates within D + 1.

Solution: The idea is that you start with G and find a vertex v1 of lowest degree, say
δ. Remove this vertex and all it’s neigbors. Call this new graph G′. Put δ into a set A.
Repeat the procedure, and put chosen vertices into A, until we have removed all vertices.
Then A will be our independent set.

How large can A be. This size is equal to the number m of times we remove a set. Let
V be the number of vertices in G. At each step we remove at most D + 1 vertices. So
A = m ≥ V

D+1 . Let Opt be the optimal size of an independent set. Then Opt ≤ V . So
we have Opt

D+1 ≤ A ≤ Opt. So the algorithm approximates with B = D + 1.

Let n = V . We remove a set less than D+1 = O(n) times. We can assume that we have
precomputed all degrees in time O(n2). In each step we have to find a node of lowest
degree in time O(n) and remove it and it’s neighbors in time O(n). The time complexity
will be O(n2).

3

