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The Restaurant Example

P(Waityes |Hungryyes&Guestsfull&Barno& . . .)
P(Waitno |Hungryyes&Guestsfull&Barno& . . .)
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Bayes’ Theorem

P(H |E ) = P(H)P(E |H)
P(E )

P(c |x1& . . .&xm) =
P(c)P(x1&...&xm|c)

P(x1&...&xm)

P(Waityes |Hungryyes&Guestsfull&Barno& . . .) =

P(Waityes)P(Hungryyes&Guestsfull&Barno&...|Waityes)
P(Hungryyes&Guestsfull&Barno&...)
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Näıve Bayes

The ”näıve” assumption of conditional independence:

P(x1& . . .&xm|c) = P(x1|c) · · ·P(xm|c)

P(Waityes |Hungryyes&Guestsfull&Barno& . . .) =

P(Waityes)P(Hungryyes |Waityes)P(Guestsfull |Waityes)P(Barno |Waityes)...
P(Hungryyes&Guestsfull&Barno&...)
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The Restaurant Example

P(Waityes) P(Hungryyes |Waityes) P(Guestsfull |Waityes) P(Barno |Waityes)

4/6 3/4 1/4 2/4
P(Waitno) P(Hungryyes |Waitno) P(Guestsfull |Waitno) P(Barno |Waitno)

2/6 1/2 1/2 2/2
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Näıve Bayes in Practice

I What if P(xv |c) = 0?
I Laplace correction may be employed, i.e., P(xv |c) = n+1

m+k ,
where n is the number of observations of xv when c is present,
m is the number of observations of xw for any value w when c
is present and k is the number of possible values for x .
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Näıve Bayes in Practice (cont.)

I What if some feature value is missing for an instance?
I For a test instance: ignore the feature when calculating class

probabilities
I For a training instance: ignore the feature when updating

counts
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Näıve Bayes in Practice (cont.)

I What if some feature is numerical?
I Employ discretization (binning), or
I Use a probability density function, e.g.,

P(v − ε/2 ≤ x ≤ v − ε/2|c) ≈ εf (v , µx,c , σx,c)
Note that for Näıve Bayes, ε is cancelled out.
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Näıve Bayes in Practice (cont.)

I Can we interpret the model/understand the predictions?
I To be discussed ...
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Implementing Näıve Bayes

I The learning algorithm is very simple; we mainly have to keep
counts for each class label and possible feature value.

I Note that we need to record all transformations on training
data, e.g., bins, so that these can be employed also on test
data, before making predictions.

I During prediction, calculating the log probability is often
recommended for numerical stability, i.e., performing addition
instead of multiplication, in particular for large numbers of
features

I Implementing both batch learning, i.e., assuming that we have
all training data from the start, and incremental learning, i.e.,
updating the model after each new incoming instance, are
quite straightforward (unless transformations are needed).
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k-Nearest Neighbors (Lazy Learning)
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The k-Nearest Neighbors Algorithm

Input: test instance e, training examples E, constant k

Output: class label c

Let N be the k closest instances to e in E

Let c be the majority class of N
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k-Nearest Neighbors in Practice

I A suitable distance metric has to be chosen; a common choice
being the Euclidean distance

d(x1, x2) =
√

(x1 − x2)2

I The Euclidean distance metric requires that
I categorical features are converted to numerical
I missing values are imputed
I numerical features are normalized
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k-Nearest Neighbors in Practice (cont.)

I Can we interpret the model/understand the predictions?
I To be discussed ...
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k-Nearest Neighbors in Practice (cont.)

I The size of the model grows with the number of training
instances, which may prevent the algorithm from being used
in resource-constrained environments

I The computational bottleneck is during prediction (inference),
as each test instance requires distance calculations for all
training instances

I Approaches to speeding up the algorithm include
I reducing dimensionality
I sampling training data or prototype selection
I partitioning the feature space, e.g., by k-d trees

16 / 19



k-Nearest Neighbors Extensions

I The algorithm can be easily adapted to regression tasks
(numerical prediction), e.g., by averaging the predictions of
the nearest neighbors.

I The distance metric may take feature weights into account,
e.g.,

d(x1, x2) =
√

(w(x1 − x2))2

I The voting procedure may take distances into account, e.g.,

wi =

{
dk−di
dk−d1 , if d1 6= dk .

1, otherwise.
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Implementing k-Nearest Neighbors

I The learning algorithm is the simplest possible; we just have
to remember all observations

I Again, we need to record all data transformation steps, e.g.,
one-hot encodings, normalizations, etc., so that these can be
employed also on test data, before making predictions.

I Implementing batch learning is straightforward, while an
incremental implementation would require that the data
transformation procedure is continuously updated.
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Summary

I Two basic learning algorithms have been considered; näıve
Bayes and the k-Nearest Neighbor algorithm.

I They are among the fastest algorithms during training.
However, there is a substantial computational cost associated
with making predictions using kNN.

I We have seen what requirements the algorithms have on data
transformations as well as various ways of extending the
algorithms.
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