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Predictive Modeling
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Split (Hold-out)

I Stratified split = class proportions are approximately the same
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N-fold Cross-Validation

I The procedure is called leave-one-out cross-validation, if N =
no. of instances

I A common choice is N = 10

I Stratification may also be employed here; stratified
cross-validation
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Classification
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Performance Metrics for Classification

I Accuracy; fraction of correct predictions

Accuracy =
tp + tn

tp + fp + tn + fn

I Precision; fraction of correct predictions for a class

Precision =
tp

tp + fp

I Recall; fraction of certain class correctly predicted

Recall =
tp

tp + fn
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Performance Metrics for Classification (cont.)

Accuracy =
332 + 0 + 24

341 + 18 + 28
≈ 91.99%
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Receiver Operating Characteristic (ROC) Curve
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Plotting

I Plotting a ROC curve

import matplotlib.pyplot as plt

pos = [1,1,1,1,0,1,0,0]

neg = [0,0,1,0,1,0,2,1]

tpr = [cs/sum(pos) for cs in np.cumsum(pos)]

fpr = [cs/sum(neg) for cs in np.cumsum(neg)]

plt.plot([0.0]+fpr+[1.0],[0.0]+tpr+[1.0],"-",label="1")

plt.plot([0.0,1.0],[0.0,1.0],"--",label="Baseline")

plt.xlabel("fpr")

plt.ylabel("tpr")

plt.legend()

plt.show()
# To save: plt.savefig("ROC")
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Plotting (cont.)
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Receiver Operating Characteristic (ROC) Curve
(cont.)

I The area under the ROC curve (AUC) = the probability of an
example belonging to the class being ranked ahead of an
example not belonging to the class

I For binary classification tasks, the AUC will be the same for
both classes.

I In case there are more than two classes, the resulting AUC
may be calculated as the weighted average of the individual
AUCs, using relative class frequencies as the weights.
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Calculating the Area under ROC Curve (AUC)

Input: (s_1,tp_1,fp_1), ..., (s_n,tp_n,fp_n) (sorted

triples of scores, no. true and false pos. with the

scores wrt some class c), Tot_tp, and Tot_fp

Output: AUC

AUC = 0

Cov_tp = 0

for i = 1 to n

if fp_i = 0 then Cov_tp += tp_i

else if tp_i = 0 then

AUC += (Cov_tp/Tot_tp)*(fp_i/Tot_fp)

else

AUC += (Cov_tp/Tot_tp)*(fp_i/Tot_fp)+

(tp_i/Tot_tp)*(fp_i/Tot_fp)/2

Cov_tp += tp_i
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Cumulative Lift Chart

Lift =

tp
tp+fp

TP
TP+FP
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Cumulative Lift Chart (alt.)
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Evaluating Predicted Probabilities

I Brier score (quadratic loss); mean squared error of the
predicted probabilities

Brier score =
1

n

n∑
i=1

(pi − oi )
2

where pi are the predicted and oi the actual (observed)
probabilities for test instance i , where typically all values are
zero in oi , except one (corresponding to the true class label)
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Evaluating Predicted Probabilities (cont.)

I Log loss (informational loss); mean logarithm of the predicted
probabilities for the true class labels

Log loss = −1

n

n∑
i=1

oi log pi

where pi are the predicted and oi the actual (observed)
probabilities for test instance i , where typically all values are
zero in oi , except one (corresponding to the true class label)
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Performance Metrics for Regression

I Mean Squared Error (MSE)

MSE =
1

n

n∑
i=1

(pi − oi )
2

I Root Mean Squared Error (RMSE)

RMSE =

√√√√1

n

n∑
i=1

(pi − oi )2

I Mean Absolute Error (MAE)

MAE =
1

n

n∑
i=1

|pi − oi |

where pi is the predicted and oi the actual (observed) target
(regression) value for test instance i
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Predicted vs. Observed Plot
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Performance Metrics for Regression (cont.)

Pearson (product moment) correlation coefficient =

∑
pioi − np̄ō√

(
∑

p2i − np̄2)
√

(
∑

o2i − nō2)

where pi is the predicted and oi the actual (observed) target
(regression) value for test instance i , and p̄ and ō are the

corresponding averages
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Empirical Investigations

What is to be investigated?

I What is the predictive performance of model M on new
(unseen) data?

I Is there a (significant) difference between model M1 and M2

(or between M1, M2, M3, . . . )?

I Is there a significant difference between algorithm A1 and A2

(or between A1, A2, A3, . . . )?
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Predictive Performance of a Model

I We assume that we have chosen some performance metric,
e.g., accuracy or MSE, for which we can obtain a sample of
measurements for the model

I Given the sample, we may infer a confidence interval, i.e., by
following the procedure we will with high probability obtain an
interval that contains the true performance of the model

I Based on the confidence interval, we may perform statistical
hypothesis testing, e.g., conclude that the model performance
is significantly different from some baseline level, i.e., the
baseline falls outside the confidence interval
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Predictive Performance of a Model (cont.)

Questions to ask when evaluating the performance:

I Is the sample representative, i.e., randomly sampled from the
target distribution?

I Is it independent, e.g., parameter settings, model choice, etc.
were not based on the data?

I Is the sample size (N) large enough?
I For highly skewed distributions, N needs to be higher than 30,

to allow for using the normal distribution when inferring
confidence intervals

I For a proportion P, e.g., accuracy, PN > 10 and
(P − 1)N > 10

I Is there actually a (single) underlying population from which
the sample is drawn?

I E.g., can the scores obtained from 10-fold cross-validation be
considered to be a sample drawn from some population?
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Comparing Two Models

I The null hypothesis assumes there is no difference between
the models

I A (sufficiently large) random sample is collected, e.g.,
measured differences in predictive performance

I A significance level is chosen and if measurements of the
sample deviate significantly from what can be expected if the
null hypothesis is true, then the null hypothesis is rejected,
and the alternative hypothesis is accepted
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Statistical Errors
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Comparing Multiple Models

I When performing multiple pairwise comparisons, the elevated
risk of type I error may be controlled, by Bonferroni
correction, i.e., divide the significance level by the number of
tested hypotheses

26 / 28



Comparing Multiple Algorithms

I When comparing multiple algorithms over multiple datasets,
the standard procedure is to employ a Friedman test, followed
by some suitable post hoc test, e.g., Nemenyi, to reject (some
of) the pairwise hypotheses, see e.g.,

Demšar, J., 2006. Statistical comparisons of classifiers over multiple

data sets. Journal of Machine learning research, 7, pp.1-30

Python implementation: https://docs.orange.biolab.si/3/data-

mining-library/reference/evaluation.cd.html

Garcia, S. and Herrera, F., 2008. An extension on ”statistical

comparisons of classifiers over multiple data sets” for all pairwise

comparisons. Journal of Machine Learning Research, 9,

pp.2677-2694.

Java implementation: http://sci2s.ugr.es/keel/multipleTest.zip
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Summary

I The choice of performance metric is (at least) as important as
the choice of learning algorithm; careful consideration of what
needs to be optimized is required

I Common traps should be avoided, e.g., dependencies between
training and test data, over-fitting the test set by repeated
experimentation.

I A careful formulation of one or more null hypotheses are
needed for empirical investigations; what exactly are to be
compared, etc.
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