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Data Preparation

The way in which data has to be prepared depends on the goal of
the analysis and the algorithms that will be employed. Such
requirements may include:

I the instances need to be represented by fixed-length feature
vectors

I for predictive modeling, labels have to be assigned to
instances, and information from test instances should not
affect choice of data preparation and learning algorithms

I there can be no missing, numerical or categorical values

I numerical features have to be normalized

I the curse of dimensionality has to be remedied by limiting the
number of features
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Representation
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Handling Missing Values

I Some techniques for analyzing data can deal directly with
missing data; no need for special handling

I Other techniques require missing values to be handled, by
I removing them, i.e., removing rows and/or columns, or
I replacing (imputing) them

I How to impute missing values is a research area of its own;
with techniques ranging from replacing missing values with
the mean or mode to more advanced methods relying on using
values from nearest neighbors
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Handling Missing Values in DataFrames

I Dropping rows or columns with missing values

df = pd.DataFrame({"id":[np.nan,2,3,4,5],

"grade":[np.nan,"b",np.nan,"c",np.nan],

"award":[np.nan, "gold", "silver",

"bronze", np.nan]})

df.dropna(how="any")

id grade award

1 2.0 b gold

3 4.0 c bronze

df.dropna(how="all",subset=["grade","award"])

id grade award

1 2.0 b gold

2 3.0 NaN silver

3 4.0 c bronze

# axis="index" is default

# alt. use axis="columns"

6 / 16



Handling Missing Values in DataFrames (cont.)

I Imputing missing values

df = pd.DataFrame({"id":[np.nan,2,3,4,5],

"grade":[np.nan,"b",np.nan,"c",np.nan],

"award":[np.nan, "gold", "silver",

"bronze", np.nan]})

values = {"grade": "e", "award": "iron"}

df.fillna(value=values)

id grade award

0 NaN e iron

1 2.0 b gold

2 3.0 e silver

3 4.0 c bronze

4 5.0 e iron

df["id"].fillna(df["id"].mean(),inplace=True)

df["award"].fillna(df["award"].mode()[0],inplace=True)
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Encoding Features: from Numerical to Categorical
(Discretization)

I The standard procedure to turn numerical (continuous)
feature values into categorical is through binning, i.e., ranges
of values define categories.

I Binning is often by either equal width, i.e., each range is the
same size, or by equal size, i.e., the same number of observed
values fall into each range

I Binning can of course be done using user-specified bins (of
different width and/or sizes) and may involve multiple
features (grid-based binning).
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Binning in DataFrames

I Equal-width binning (using cut)

df = pd.DataFrame({"values": np.random.rand(100)})

res, bins = pd.cut(df["values"],10,retbins=True)

bins

array([0.02501036, 0.12329601, 0.22060853, 0.31792105,

0.41523357, 0.5125461 , 0.60985862, 0.70717114,

0.80448366, 0.90179619, 0.99910871])

res

0 (0.61, 0.707]

1 (0.415, 0.513]

2 (0.221, 0.318]

3 (0.123, 0.221]

...
new_res = pd.cut(df2["values"],bins)
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Binning in DataFrames (cont.)

I Equal-sized binning (using qcut)

df = pd.DataFrame({"values": np.random.randn(100)})

res, bins = pd.qcut(df["values"],10,retbins=True,

labels=list("abcdefghij"))

bins

array([-2.52042001, -1.28725864, -0.85326262, -0.56196045,

-0.37714909, -0.09507675, 0.31009968, 0.60596668,

0.81044397, 1.29253893, 2.45534755])

res

0 j

1 b

2 b

3 j
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Encoding Features: from Categorical to Numerical

I It is typically not a good idea to turn a (multi-valued)
categorical feature into a single numerical feature (unless the
values have an ordering)

I A common approach is to employ one-hot encoding, i.e., a
new (binary) feature is created for each possible categorical
value, and the new feature values for an instance (row) are all
assigned zero except for the feature corresponding to the
categorical value appearing in the original row (which is
assigned one).

I Note that one-hot encoding may lead to feature explosion,
i.e., the number of features growing beyond control. Grouping
of values or other dimensionality reduction techniques may be
required.
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Encoding Features: from Categorical to Numerical
(cont.)

I One-hot encoding (example)

value

0 a

1 b

2 c

3 a

4 b

5 c

→
value-a value-b value-c

0 1 0 0

1 0 1 0

2 0 0 1

3 1 0 0

4 0 1 0

5 0 0 1
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Encoding Features: Normalization

I min-max normalization; x ′i =
xi−xmin

xmax−xmin

df = pd.DataFrame({"values": np.random.randn(100)})

min = df["values"].min()

max = df["values"].max()

df["values"] = [(x-min)/(max-min) for x in df["values"]]

I z-normalization; x ′i =
xi−x̄
s

df = pd.DataFrame({"values": np.random.randn(100)})

mean = df["values"].mean()

std = df["values"].std()

df["values"] = df["values"].apply(lambda x: (x-mean)/std)
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Encoding Features: Dimensionality Reduction

I Feature selection
I Filtering approaches, i.e., ranking the input features based on

their correlation with the output (target) feature, using e.g.,
information gain, χ2

I Wrapper approaches, i.e., iteratively choosing features based
on their effect/presence in models generated by a specific
learning algorithm

I Principal Component Analysis (PCA), i.e., projecting multiple
numerical features into new features by a linear combination,
ordered by the amount of (remaining) variability they can
account for, from which the (k) highest ranked are chosen;
computationally costly (O(p2n + n3))

I Random Projection (RP), i.e., projecting multiple numerical
features into (k) new features using a (sparse) random matrix;
computationally not so costly (O(pnk))
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Feature Selection by Filtering

I Selection of top-ranked categorical features

for col in df.columns:

df[col] = df[col].astype("category")

res = [(col,[g.groupby("class").size().values

for n, g in df.groupby(col)])

for col in df.columns.drop("class")

scores = [(col,score(r)) for col, r in res]

sorted_scores = sorted(scores,key=lambda tup: tup[1])

filtered = [col for col, score in sorted_scores[:2]]

df = df.loc[:,filtered]
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Summary

I We have covered various approaches to handling missing
values and encoding features, i.e., changing the type and
number of features

I A proper choice of feature encoding technique(s) may not
only lead to that requirements of specific learning algorithms
are met, but also to improved efficiency and/or effectiveness.
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