co Sl |D2214 Programming for Data Science

H,

i3 — Introduction to Python

3% OCH KONST 8¢

‘e‘i&&\‘%‘f’i
Henrik Bostrom

Prof. of Computer Science - Data Science Systems
Dept. of Software and Computer Systems

School of Electrical Engineering and Computer Science
KTH Royal Institute of Technology

bostromh@kth.se

October 31, 2018

Outline

Installing Python

Variables, Numbers, Strings and Casting
Operators

Lists, Tuples, Sets and Dictionaries

If Statements, For and While Loops

List Comprehensions

Functions

Classes and Objects
Modules
Input/Output

Installing Python

» The offical Python website is www.python.org, where
downloads, tutorials, community, etc. may be found

» A convenient way of installing Python together with a large
number of packages (several to be used during the course) is
to install Anaconda (www.anaconda.com/download/)

» Choose Python 3 (the stable version is currently 3.6), since it
will be assumed on all slides, assignments, etc.

» Find some suitable IDE/working environment, e.g., PyCharm,
PyDev, Jupyter, Emacs

» Note that the assignments have to be submitted in the form
of Jupyter notebooks; see instructions in Canvas

3/27

www.python.org
www.anaconda.com/download/

Variables and Numbers

> A variable is created when a value is assigned to it

v = 3.6

> There are three types of numbers; int, float and complex

i= 314
f = 3.14e2
= 2+3j

» The type of a variable can be checked with isinstance(...)

b = isinstance(i,float) # b = False

Strings and Casting

» Strings (str) are surrounded by single or double quotes

b = isinstance("i",str) # b = True

» Casting using constructor functions; int(...), float(...),

str(...)
i = int(3.14) #i=3
f = float(3) # £ =3.0
s = str(3.14) # s = "3.14"
f = float(s) # f =23.14

Operators

» Arithmetic operators; +, -, *, /, ** (exp.), // (floor div.), %

(modulus)
v = 2.0 + 2%%3 # v =10.0
» Assignment operators; =, +=, ==, x=, /=
x = 12
» Comparison operators; ==, =, > <, >= <=

b= (2.0 == 2) # Db

1]
—]
H
a
(0]

Operators (cont.)

» Logical operators; and, or, not

b = (141 == 2 and not(4>5)) # b = True
> ldentity operators; is, is not

b= (2 is 2.0) # b = False

b = (1+1 is 2) # b = True

Lists and Tuples

» Lists (indexed, ordered, changeable)

languages = ["Python","r","Julia"]
first_element = languages[0]
all_but_first = languages[1:]
all_but_last = languagesl[:-1]

first_two = languages[0:2]

languages[1] = "R"

languages += ["Java"]
1=["a",1,2,"b","b"]

len(1) # returns 5
1.count("b") # returns 2

» Tuples (indexed, ordered, items cannot be changed)

fixed = ("a“ s np" , "C“)
fixed[0]= "4" # Results in error

Sets and Dictionaries

» Sets (not indexed, unordered, no duplicates)

{"a","b","b",“c“} # s = {"a","b",“c“}
s = s.remove("a") # s {"b","c"}

s.union(set(languages))

» Dictionaries (indexed, unordered, changeable)

d = {"Python":1994,"R":1995,"Julia":2018%}

y = d["R"] #y = 1995

d["s"] = 1976

list(d.keys()) # ["Python", "R", "Julia", "S"]
list(d.values()) # [1994, 1995, 2018, 1976]

d2 = {("a",1):500, ("b",2):250}
d2[("v",2)] # returns 250

If Statements

> if statements (with elif and else)

if n>b:
print("more than 5")
elif n == 5: # - elif not required,
print("equal to 5") # and multiple allowed
else: # - else not required

print("less than 5") # and most one allowed

For Loops

» for loops (with break and continue)

for i in range(3): # Prints 0, 1, 2
print (i)
for i in [1,2,3]: # Prints 1, 2, 3
print (i)
for i in "hello": # Prints h, e, 1, 1, o
print (i)
for i in [1,2,3]: # Prints 1
if 1 % 2 ==
break
print (i)
for i in [1,2,3]: # Prints 1,3
if 1 % 2 ==
continue
print (i)

11/27

While Loops

» while loops (with break and continue)

i=1
while 1 < 4: # Prints 1, 2, 3
print (i)
i+=1
i=1
while i < 4: # Prints 1
if i % 2 == 0:
break
print (i)
i+=1

While Loops (cont.)

» while loops (with break and continue)

)
;hile i< a4 # Prints 1 and then
if i Y 2'__ . # enters infinite loop
continue
print (i)

i+=1

List Comprehensions

» Creating lists without for/while loops

nl = [1]
for la in languages:
nl += [la.lower()]

Equivalent (but more efficient):
nl = [la.lower() for la in languages]

Include only items with multiple characters
nl = [la.lower() for la in languages if len(la) > 1]

Convert items only with multiple characters
nl = [la.lower() if len(la) > 1 else la for la in languages]

Generate a list with all characters
cs = [c for la in languages for c in la]

14 /27

Functions

» functions (using def and return)

def add_one_and_print(a):

a+=1

print(a)

return a
b=1
¢ = add_one_and_print (b) # 2 is printed and ¢ = 2
print (b) # 1 is printed

def add_two_to_second(1l1):

11[1] += 2
1=1[1,2,3,4,5]
= add_two_to_second (1) # Note: 1 = [1,4,3,4,5]
r is None # True

15/27

Functions (cont.)

» functions with default argument values

def diff(a=10,b=20):
return a-b

do = diff() # d0 = -10
dl = diff(5,6) #dl = -1
d2 = diff(5) # d2 = -15
d3 = diff(b=5) # d3 =5
d4 = diff(b=2,a=3) #d4 =1

16 /27

Lambda Functions

» Lambda functions = anonymous functions with one expression

r = (lambda x: x+1)(5) #r =26
f = lambda x,y: x+y
sum = £(2,3) # sum = 5

def deriv(f,x,h):
return (f(x+h)-f(x))/h

deriv(lambda x: x**2,8,1e-10) # 16.000001323845936

17/27

Classes and Objects

» Class definitions (using class)

class DSLang:
def __init__(self, name, year):
self.name = name
self.year = year

11 = DSLang("Python",1994)
12 = DSLang("Julia",2018)
print(11.name) # Prints Python

18/27

Classes and Objects (cont.)

» Methods

class DSLang:
def __init__(self, name, year):
self.name = name
self.year = year

def age(self,current_year):
return current_year-self.year

12 = DSLang("Julia",2018)
print (12.age(2018)) # Prints O

19/27

Classes and Objects (cont.)

» Special methods

class Super:
def __init__(self, age):
self.age = age
def __str__(self):
return "My age is: "+str(self.age)
def __eq__(self,other):
return other > self.age
def __len__(self):

return self.age

Orzniﬁiir(S) # My age is: b
z . # True

20/27

Classes and Objects (cont.)

» Inheritance

class Sub(Super):
def __init__(self,age=3):
self.age = age

s = Sub()
print(s) # My age is: 3
len(s) # 3

Modules

» Define a module by placing your code in a file, named with
the extension .py

In the file my_definitions.py
class DSLang:
def __init__(self, name, year):

self .name = name
self.year = year

Modules (cont.)

> Import a module and use its definitions

import my_definitions
lo = my_definitions.DSLang("R",1995)

import my_definitions as md
lo = md.DSLang("R",1995)

from my_definitions import DSLang
lo = DSLang("R",1995)

23/27

Modules (cont.)

» Reloading a module (after having edited its definitions)

from importlib import reload

reload(my_definitions)

Input/Output

» Write to standard output

print("R",1995) # Prints R 1995

print ("N:{} Y:{}".format("R",1995)) # Prints N: R Y: 1995
print("F: {:.2f}".format(31.41592)) # Prints F: 31.42
print("F: {:.4f}".format(31.41592)) # Prints F: 31.4159

» Read from standard input

s = input() # s will be assigned
a string

25 /27

Input/Output (cont.)

> Write to files
f = open("temp.txt","w") # Opens file for (over-)writing
result = [1,2,3]

f.write(str(result)) # Only strings can be written
f.close()

f = open("temp.txt","a") # Opens file for appending text

f.write("Bye!\n")
f.close()

26 /27

Summary

» We have covered a large part (but not all) of the syntax and
semantics of Python (check the documentation for additional
features)

> It should be noted that Python has primarily been developed
for ease-of-use rather than with efficiency in mind

» Together with libraries, such as NumPy and pandas (covered
in the next lecture), it has become a standard tool for data
scientists

27 /27

	Installing Python
	Variables, Numbers, Strings and Casting
	Operators
	Lists, Tuples, Sets and Dictionaries
	If Statements, For and While Loops
	List Comprehensions
	Functions
	Classes and Objects
	Modules
	Input/Output

