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Basis

Basis of a subspace
Let V be a subspace of Rn. A basis for V is a set of vectors S = {v1, v2, . . . , vk}
in V such that

1 S spans V, and
2 S is linearly independent.

Existence of basis
If V is a nonzero subspace of Rn, that is V 6= {0}, then V has a basis and this
basis has at most n vectors.

Bases
A subspace generally has infinitely many bases, but they all contain the same
number of vectors.
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Dimension

Dimension of a subspace
The number of vectors in a basis for V is called the dimension of V and is
denoted by dim(V).

Warning
The zero subspace {0} cannot have a basis. We define dim({0}) to be 0.

Linear dependence
A set of two or more nonzero vectors S = {v1, v2, . . . , vk} is linearly dependent
if and only if some vector in S is a linear combination of its predecessors.
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Determine by inspection whether the vectors are linearly
independent

v1 = (1, 2,−2) and v2 = (−2,−4, 4) are linearly dependent in R3, since
v2 = −2v1.
v1 = (1, 2,−2), v2 = (−2,−4, 4), and v3 = (0, 0, 0) are linearly dependent
in R3, since it contains the zero vector.
v1 = (0, 1, 0), v2 = (2, 0, 2), and v3 = (−3, 0, 3) are linearly independent in
R3, since v2 is not a scalar multiple of v1, and v3 is not a linear
combination of v2 and v1 (verify).
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Basic problems

Given a set of vectors S = {v1, v2, . . . , vk} in Rn. Let A be an n× k matrix has
these vectors as columns and R a row echelon form of A.

Determining whether S spans Rn

The following are equivalent
a span(S) = Rn.
b Ax = b has a solution for every b ∈ Rn.
c R has a leading 1 in every row.

Determining whether S is linearly independent
The following are equivalent

a S is linearly independent.
b Ax = 0 has only the trivial solution x = 0.
c R has a leading 1 in every column.
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Corollary
1 If k = n, then S spans Rn if and only if S is linearly independent. In which

case, S is a basis for Rn.
2 If k < n, then S cannot span Rn.
3 If k > n, then S is not linearly independent.

Examples
v1 = (2, 0, 0), v2 = (0,−1, 0), and v3 = (0, 0, 3) are linearly independent
and hence form a basis for R3.
v1 = (0, 1), v2 = (2,−3), and v3 = (−1, 4) are linearly dependent in R2,
since it contains 3 vectors in R2.
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Finding a basis for the solution space of Ax = 0
1 Solve the system using Gauss-Jordan elimination.
2 If the solution is unique x = 0 then the solution space is {0} and has

dimension 0.
3 If the general solution has the vector form

x = t1v1 + t2v2 + · · ·+ tkvk

then v1, v2, . . . , vk, called canonical solutions, are linearly independent
and hence form a basis for the solution space→ the solution space has
dimension k. We call that basis the canonical basis for the solution
space.

Recall that if a is a nonzero vector in Rn, then the hyperplane a⊥ through 0 is
the set a⊥ = {x ∈ Rn | x · a = 0}.

Dimension of a hyperplane
The hyperplane can be viewed as the solution space of a linear system of one
equation in n unknowns. Thus dim(a⊥) = n− 1.
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Properties of bases

Expression of vector in basis
If {v1, v2, . . . , vk} is a basis for a subspace V, then every vector in V can be
expressed uniquely as a linear combination of the vi’s.

Two important facts about bases
Let S be a set of s vectors in a nonzero subspace V of Rn

i If S spans V, then S is either a basis or contains a basis for V; and thus
dim(V) ≤ s.

ii If S is linearly independent, then S is either a basis or can be extended to
a basis for V; and thus dim(V) ≥ s.

Dimensions of subspaces
If V and W are subspaces of Rn and if V is contained in W, then

i 0 ≤ dim(V) ≤ dim(W) ≤ n.
ii V = W if and only if dim(V) = dim(W).
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Spanning and linear independence
Let S be a set of s vectors in a subspace V with dim(V) = k.

1 If s = k and S is linearly independent, then S is a basis for V.
2 If s = k and S spans V, then S is a basis for V.
3 If s < k, then S cannot span V.
4 If s > k, then S is not linearly independent.

Fundamental theorem of invertible matrices (cont.)
If A is an n× n matrix, then the following statements are equivalent

d Ax = 0 has only the trivial solution.
g The column vectors of A are linearly independent.
h The row vectors of A are linearly independent.
m The column vectors of A span Rn.
n The row vectors of A span Rn.
o The column vectors of A form a basis for Rn.
p The row vectors of A form a basis for Rn.
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The fundamental spaces of a matrix

There are four fundamental spaces associated to an m× n matrix A

I row(A): the row space of A is the span of the m row vectors of A.
II col(A): the column space of A is the span of the n column vectors of A.
III null(A): the null space of A is the solution space of Ax = 0.
IV null(AT): the null space of AT is the solution space of ATx = 0.

Rank and nullity
The dimension of the row space of A is called the rank of A and is denoted by
rank(A). The dimension of the null space of A is called the nullity of A and is
denoted by nullity(A).

Since col(A) = row(AT), the dimension of the column space of A is the rank of
AT .
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Fundamental spaces of the matrix A
I row(A) =

{
ATx | x ∈ Rm

}
is a subspace of Rn and rank(A) ≤ min{m, n}.

II col(A) = {Ax | x ∈ Rn} is a subspace of Rm and rank(AT) ≤ min{m, n}.
III null(A) = {x ∈ Rn | Ax = 0} is a subspace of Rn and nullity(A) ≤ n.
IV null(AT) =

{
x ∈ Rm | ATx = 0

}
is a subspace of Rm and nullity(AT) ≤ m.

SF1684 Lecture 5 Nov 2018 15 / 57



Orthogonal complements
Orthogonal complement
If S is a nonempty set in Rn, then the set of all vectors in Rn that are
orthogonal to every vector in S is a subspace of Rn. It is called the orthogonal
complement of S and is denoted by S⊥.

Properties of orthogonal complements
Let S be a nonempty set in Rn and W a subspace of Rn.

i W⊥ ∩W = {0}.
ii S⊥ = span(S)⊥.
iii (W⊥)⊥ = W; W and W⊥ are orthogonal complements of one another.
iv (S⊥)⊥ = span(S).

Example
A line L through 0 of R3 and the plane through 0 that is perpendicular to L are
orthogonal complements of one another.
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Orthogonal complements of row(A) and col(A)
Let A be an m× n matrix. The row space and the null space of A are
orthogonal complements. Similarly, the column space of A and the null space
of AT are orthogonal complements. In conclusion,

row(A)⊥ = null(A), null(A)⊥ = row(A),

col(A)⊥ = null(AT), null(AT)⊥ = col(A).
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Effect of elementary row operations on the
fundamental spaces of a matrix

Effect of elementary row operations
i Elementary row operations do not change the row space or the null

space of a matrix.
ii Elementary row operations do change the column space of a matrix, but

do not change the linear independence or dependence relations between
the column vectors.
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Some applications
Let A be an m× n matrix and R a row echelon form of A. We denote by
S = {r1(R), r2(R), . . . , rk(R)} the set of successive nonzero row vectors in R
and T = {cj1(R), cj2(R), . . . , cjk(R)} the set of column vectors (may be not
successive) in R that have the leading 1’s. Note that we have the same
number of vectors in the two sets.

Basis for row(A)
S is linearly independent (verify) and hence forms a basis for row(R). Since
row(A) = row(R), the vectors r1(R), r2(R), . . . , rk(R) is also a basis for row(A).

Basis for col(A)
T is linearly independent and any column vector cj(R) /∈ T is a linear
combination of the vectors in T (verify). Since the corresponding column
vectors from A satisfy the same linear independence or dependence relations,
the vectors cj1(A), cj2(A), . . . , cjk(A) are also linearly independent and form a
basis for col(A). This is called the Pivot Theorem; see in the next slides.
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Finding a basis for a span
Given a set of vectors S = {v1, v2, . . . , vk} in Rn, find a basis for the subspace
W = span(S). Find also a basis for W⊥.

Solution

We start by forming a k× n matrix A that has v1, v2, . . . , vk as row vectors, then
W is the row space of A. A basis for W is the nonzero rows in a row echelon
form of A.

Since W⊥ is the null space of A, we wish to find a basis for the solution space
of the linear system Ax = 0. We will use the canonical basis produced by
Gauss-Jordan elimination.

Example
See Example 4 on page 346 of the textbook.
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Determining whether a vector is in a subspace
Find conditions in which a vector b in Rn will lie in W = span(S).

Solution 1

We start by forming an n× k matrix C that has v1, v2, . . . , vk as column vectors,
then W is the column space of C. Thus b lies in W if and only if the linear
system Cx = b is consistent.

Solution 2

We form a k × n matrix A that has v1, v2, . . . , vk as row vectors and a matrix Ab
by adding b to A as an additional row vector. Our problem reduces to finding
conditions on b under which A have the same rank as Ab.

Solution 3

Observe that b lies in W if and only if b is orthogonal to every vector in W⊥

which is the null space of the matrix A in Solution 2. We find a basis for
null(A) and then determine conditions in which b is orthogonal to that basis.

Example
See Example 6 on page 347 of the textbook.
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The dimension theorem and its application

Consider a linear system Ax = 0 of m equations in n variables (A has size
m× n). The number of free variables is the same as the dimension of the
solution space and the number of leading variables is the same as the
dimension of the row space of A. The above observations, together with

number of free variables + number of leading variables = n variables,

imply that nullity(A) + rank(A) = n.

Dimension theorem for matrices
If A is an m× n matrix, then rank(A) + nullity(A) = n.

Corollary
Since AT has m columns, we have rank(AT) + nullity(AT) = m.
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Corollary
If A has rank k, then

i A has nullity n− k.
ii Every row echelon form of A has k nonzero rows and m− k zero rows.
iii The homogeneous system Ax = 0 has k pivot (leading) variables and

n− k free variables.

Fundamental theorem of invertible matrices (cont.)
If A is an n× n matrix, then the following statements are equivalent

d Ax = 0 has only the trivial solution.
q rank(A) = n.
r nullity(A) = 0.
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Extending a linearly independent set to a basis
Given a linearly independent set S = {v1, v2, . . . , vk} in Rn, extend S to a basis
for Rn.

Solution
1 Form a matrix A that has v1, v2, . . . , vk as row vectors.
2 Find a basis for the null space of A. This basis has n− k vectors, say

wk+1,wk+2, . . . ,wn.
3 The set of n vectors {v1, v2, . . . , vk,wk+1,wk+2, . . . ,wn} is linearly

independent and hence forms a basis for Rn.

Example
See Example 2 on page 353 of the textbook.
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Dimension theorem for subspaces
If W is a subspace of Rn, then dim(W) + dim(W⊥) = n.

Corollary
If dim(W) = n− 1, then dim(W⊥) = 1. It implies that W⊥ is a line through the
origin of Rn and its orthogonal complement, the subspace W, is a hyperplane
through the origin of Rn.

Rank 1 matrix
If u is a nonzero m× 1 matrix and v is a nonzero n× 1 (column vectors), then
the outer product A = uvT has rank 1. Conversely, if A has rank 1, then A can
be factored into a product of the above form.
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The rank theorem and its applications

Rank theorem
The row space and the column space of a matrix have the same dimension.
More precisely, if A is an m× n matrix, then

rank(A) = k, nullity(A) = n− k,

rank(AT) = k, nullity(AT) = m− k.

Consistency theorem
If A is an m× n matrix and b in Rm, then the following statements are
equivalent

a Ax = b is consistent.
b b is in the column space of A.
c The augmented matrix [A | b ] has the same rank as A.
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Definition
A matrix is said to have full column rank if its column vectors are linearly
independent, and full row rank if its row vectors are linearly independent.

Remark
A matrix A has full column rank if and only if AT has full row rank.

Full column rank and full row rank
Let A be an m× n matrix.

i A has full column rank if and only if rank(A) = n.
ii A has full row rank if and only if rank(A) = m.
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Unifying theorem
If A is an m× n matrix, then the following statements are equivalent

a Ax = 0 has only the trivial solution.
b Ax = b has at most one solution for every b ∈ Rm.
c A has full column rank.
d The n× n matrix ATA is invertible.

Example
See Example 7 on page 366 of the textbook.
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The pivot theorem and its applications

Pivot columns
The columns of a matrix A that contain the leading 1’s in the row echelon
forms of A are called the pivot columns of A.

Pivot theorem
The pivot columns of A form a basis for the column space of A.

Examples
See Examples 1, 2 on pages 371–373 of the textbook.
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Finding a basis for a span
Let W be a subspace of Rn that is spanned by a set of vectors
S = {v1, v2, . . . , vk}. Find a basis for W consisting of vectors from S.

Solution
1 Form a matrix A that has v1, v2, . . . , vk as column vectors.
2 Reduce A to a row echelon form U. A basis for W given by the pivot

columns of A, identified using U.

Express the vectors in S that are not in the basis as linear combinations of the
basis vectors

Solution
3 Continue reducing U to the reduced row echelon form R of A.
4 By inspection, express each vector of R that does not contain a leading 1

as a linear combination of preceding columns that contain leading 1’s.
Then those same linear combinations will apply to the corresponding
columns of A.
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Bases for the fundamental spaces of a matrix

Finding bases for the four fundamental spaces of a matrix A
All four bases can be found using a single row reduction procedure. Let U be
a row echelon form of A and let R be the reduced row echelon form. Then
bases are given by the following vectors:

I row(A): the nonzero rows of U or R.
II col(A): the pivot columns of A, identified using U or R.
III null(A): the canonical solutions of Ax = 0; and these are readily obtained

from the system Rx = 0.
IV null(AT): form an m× (n + m) matrix with left half A and right half the

identity matrix Im. Reduce A to R applying the same operations to the
whole matrix. A basis given by rows of resulting right half matrix which
are beside the zero rows of left half R.

Example
See Example 3 on page 374 of the textbook.
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The projection theorem and its applications

Orthogonal projection onto a line
If a ∈ Rn is a nonzero vector, then every x ∈ Rn can be expressed in exactly
one way as x = x1 + x2, where x1 is parallel to a and x2 is orthogonal to a. We
have

x1 = proja x =
x · a
‖a‖2 a and x2 = x− x1 = x− x · a

‖a‖2 a,

where proja x is called the orthogonal projection of x onto span{a}.

Projection operator on Rn

Let T : Rn → Rn be an operator defined by T(x) = proja x. Then T is a linear
operator and its standard matrix is given by

P =
1

aTa
aaT , with a is in column form.

This matrix is symmetric (P = PT ) and idempotent (P2 = P) and has rank 1.
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Examples
See Examples 1–5 on pages 380–383 of the textbook.
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Projecton theorem for subspaces
If W is a subspace of Rn, then every x ∈ Rn can be expressed in exactly one
way as x = x1 + x2, where x1 is in W and x2 is in W⊥.

x1 is the orthogonal projection of x on W and x2 is the orthogonal
projection of x on W⊥. Thus, we can write

x = projW x + projW⊥ x.

Orthogonal projection onto W
If M is any matrix whose column vectors form a basis for W, then MTM is
invertible and

projW x = M(MTM)−1MTx.

If we define the orthogonal projection of Rn onto W: T(x) = projW x, then its
standard matrix is

P = M(MTM)−1MT .

This matrix is symmetric and idempotent and has rank equal to the dimension
of W.
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Orthogonal projection onto W⊥

The standard matrix for projW⊥ x can be expressed in terms of the standard
matrix P for projW x as

I − P = I −M(MTM)−1MT .

Orthogonal projection matrix
If P is an n× n symmetric, idempotent matrix, then TP(x) = Px is the
orthogonal projection onto the column space of P. Moreover, since P is
idempotent, the dimension of the column space is equal to the trace of P.

Examples
See Examples 6–8 on pages 385–386 of the textbook.
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Best approximation

Best approximation theorem
If W is a subspace of Rn and b is a point in Rn, then ŵ = projW b is the unique
best approximation to b from W.
That is, for any other w in W, ‖b− ŵ‖ < ‖b− w‖.

Distance from point to subspace
The distance from a point b to W is defined to be

d = ‖b− projW b‖ = ‖projW⊥ b‖ .

Distance from a point to a hyperplane
The hyperplane W = {x ∈ Rn | x · a = 0} has its orthogonal complement
W⊥ = span{a}. Thus, we have

d = ‖projW⊥ b‖ = |a · b|
‖a‖

=
|a1b1 + a2b2 + · · ·+ anbn|√

a2
1 + a2

2 + · · ·+ a2
n

.
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Least squares
Let A be an m× n matrix and b a vector in Rm, not necessarily in the column
space of A. Since Ax = b might be inconsistent, we wish to find a vector
x̂ ∈ Rn such that Ax̂ is a best approximation b.

Definition
A vector x̂ ∈ Rn is called a least squares solution of Ax = b if it minimizes
the error ‖b− Ax‖. The vector b− Ax̂ is called the least squares error vector
and the scalar ‖b− Ax̂‖ is called the least squares error.

By the Best Approximation Theorem, Ax̂ is the projection of b onto col(A).

Least squares solution of linear system
i The least squares solutions are the solutions of the equation

Ax = projcol(A) b. This system is certainly consistent, since projcol(A) b is
in the column space of A.

ii Every least squares solution x̂ has the same error vector, namely
b− Ax̂ = projnull(AT) b.
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Normal equation
The system ATAx = ATb is called the normal equation or normal system
associated with Ax = b.

Finding least squares solution
The least squares solutions of Ax = b are the exact solutions of the normal
equation ATAx = ATb.

1 If A has full column rank (that is, the columns are linearly independent),
then ATA is invertible and the unique solution of the normal equation is

x̂ = (ATA)−1ATb.

2 If A does not has full column rank, then the normal equation has infinitely
many solutions.

Examples
See Examples 3–4 on pages 386–387 of the textbook.
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Fitting a curve to data

Given data points (x1, y1), (x2, y2), . . . , (xn, yn) that are supposed to be related
by a linear equation y = ax + b (called linear regression model).
We have

Mv = y where M =


1 x1
1 x2
...

...
1 xn

 , v =

[
a
b

]
, y =


y1
y2
...

yn

 .

If the data do not exactly lie on a line, then the linear system will be
inconsistent. In this case we look for a least squares approximation to a and b
by solving the normal system

MTMv = MTy or alternatively,
[

n
∑

xi∑
xi

∑
x2

i

][
a
b

]
=

[ ∑
yi∑

xiyi

]
.

The line y = ax + b is called the least squares line of best fit to the data (or
the regression line). Note that MTM is invertible unless xi’s are all the same.
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This technique can be generalized to fitting a polynomial to a set of data
points. Suppose that we want to find a polynomial of degree m with
coefficients a0, a1, . . . , am that is a best fit (in a least squares sense) for the n
data points (x1, y1), (x2, y2), . . . , (xn, yn). We have

Mv = y where M =


1 x1 x2

1 · · · xm
1

1 x2 x2
2 · · · xm

2
...

...
...

...
1 xn x2

n · · · xm
n

 , v =


a0
a1
...

am

 , y =


y1
y2
...

yn

 .

In the special case where m = n− 1 and the xi’s are distinct, the linear system
has unique solution. If m < n− 1, the system will usually be inconsistent, so
we solve for ai’s using the normal system

MTMv = MTy.

If at least m + 1 of xi’s are distinct, then M has full column rank. Thus, MTM is
invertible and the unique solution of the normal equation is

v = (MTM)−1MTy.

SF1684 Lecture 5 Nov 2018 45 / 57



There are three important models in application
1 Exponential model: y = aebx.
2 Power function model: y = axb.
3 Logarithmic model: y = a + b ln(x).

The data can be transformed to a linear form in which a linear regression can
be used to approximated the constants a and b. For example, if we take the
natural log of both sides of the equation y = aebx, then we have the equivalent
equation ln(y) = ln(a) + bx. This expresses ln(y) as a linear function of x and
hence we can use the least squares line of best fit to the transformed data
points (x1, ln y1), (x2, ln y2), . . . , (xn, ln yn) to estimate ln(a) and b, and then
computing a from ln(a).

Examples
See Examples 5–7 on pages 400–403 and Exercise T5–T7 on page 406 of
the textbook.
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Orthogonal and orthonormal bases
Definition
S = {v1, v2, . . . , vk} is an orthogonal basis for a subspace V of Rn if

1 S is a basis for V, and
2 S is orthogonal, that is vi · vj = 0 for all i 6= j.

S is an orthonormal basis if it is an orthogonal basis, and in addition
3 Each vector in S has length 1, that is ‖vi‖ = 1 for all 1 ≤ i ≤ k.

Orthogonality and linear independence
An orthogonal set of nonzero vectors in Rn is linearly independent.

Existence of orthonormal basis
Every nonzero subspace of Rn has an orthonormal basis.

Examples
See Examples 1–3 on page 407 of the textbook.
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Finding orthogonal and orthogonal bases

Gram-Schmidt process
This process is an algorithm for finding an orthonormal basis for any nonzero
subspace W. Start with any basis {w1,w2, . . . ,wk} for W. Let

v1 = w1

v2 = w2 −
w2 · v1

‖v1‖2 v1

v3 = w3 −
w3 · v1

‖v1‖2 v1 −
w3 · v2

‖v2‖2 v2

...
vk = wk −

wk · v1

‖v1‖2 v1 − · · · −
wk · vk−1

‖vk−1‖2 vk−1.

The set {v1, v2, . . . , vk} is an orthogonal basis for W.

To obtain an orthonormal basis, we divide each vector vi by its length. Thus, if
we set qi =

vi

‖vi‖
, then {q1,q2, . . . ,qk} is an orthonormal basis for W.
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Examples
See Examples 9, 10 on pages 412–413 of the textbook.
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Orthogonal projection using orthornormal basis

Let {v1, v2, . . . , vk} be a basis for a subspace W of Rn. We consider the
orthogonal projection of a vector x ∈ Rn onto W.

Orthogonal projection using orthornormal basis
i If the basis {v1, v2, . . . , vk} is orthogonal, then

projW x =
x · v1

‖v1‖2 v1 +
x · v2

‖v2‖2 v2 + · · ·+
x · vk

‖vk‖2 vk.

ii If the basis {v1, v2, . . . , vk} is orthonormal, then

projW x = (x · v1)v1 + (x · v2)v2 + · · ·+ (x · vk)vk.

Examples
See Examples 5, 6 on page 409 of the textbook.
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Linear combination of orthogonal basis

If w is a vector in W, then projW w = w. Thus, we have

Linear combination of orthogonal basis
i If the basis {v1, v2, . . . , vk} is orthogonal, then

w =
w · v1

‖v1‖2 v1 +
w · v2

‖v2‖2 v2 + · · ·+
w · vk

‖vk‖2 vk.

ii If the basis {v1, v2, . . . , vk} is orthonormal, then

w = (w · v1)v1 + (w · v2)v2 + · · ·+ (w · vk)vk.

Example
See Example 8 on page 411 of the textbook.
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Coordinates with respect to a basis
Coordinate vector
Let B = {v1, v2, . . . , vk} be an ordered basis for a subspace W of Rn and let w
be in W. If w = a1v1 + a2v2 + . . .+ akvk, then we call a1, a2, . . . , ak the ordered
coordinates of w with respect to B. The ordered k-tuple of coordinates
(w)B = (a1, a2, . . . , ak) is called the coordinate vector for w with respect to B,
and

[w]B =


a1
a2
...

ak


is called the coordinate matrix for w with respect to B.

Coordinates with respect to an orthonormal basis
If B = {v1, v2, . . . , vk} is an orthonormal basis for a subspace W, and if w ∈ W
then the coordinate vector of w with respect to B is

(w)B =
(
(w · v1), (w · v2), . . . , (w · vk)

)
.
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Computing with coordinates
Let B be an orthonormal basis for a k-dimensional subspace W of Rn. If u and
v are vectors in W with coordinate vectors (u)B = (u1, u2, . . . , uk) and
(v)B = (v1, v2, . . . , vk), then

i ‖u‖ =
√

u2
1 + u2

2 + · · ·+ u2
k = ‖(u)B‖.

ii u · v = u1v1 + u2v2 + · · ·+ ukvk = (u)B · (v)B.

Change of basis
Let B = {v1, v2, . . . , vn} and B′ = {v′1, v′2, . . . , v′n} be bases for Rn. If w ∈ Rn

then the coordinate matrices of w with respect to the two bases are related by
the equation

[w]B′ = PB→B′ [w]B,

where
PB→B′ =

[
[v1]B′ [v2]B′ · · · [vn]B′

]
is the transition matrix (or the change of coordinates matrix) from B to B′.
In the case B′ = S is the standard basis for Rn, then PB→S =

[
v1 v2 · · · vn

]
.
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Invertibility of transition matrix
The transition matrices PB→B′ and PB′→B are invertible and inverse of one
another, that is

PB→B′ = (PB′→B)
−1.

Procedure for computing PB→B′

1 Form the matrix [B′ | B ].
2 Reduce the matrix above to reduced row echelon form using

Gauss-Jordan elimination.
3 The resulting matrix will be [ I | PB→B′ ]. Just extract the matrix PB→B′ .

Examples
See Examples 1–7 on pages 429–435 of the textbook.
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Coordinate map
Let B be a basis for Rn. The transformation x→ (x)B (or x→ [x]B), called the
coordinate map for B, is a one-to-one (and hence also onto) linear operator
on Rn. Moreover, if B is an orthonormal basis for Rn, then the coordinate map
is an orthogonal operator.

Transition between orthonormal bases
If B and B′ are orthonormal bases for Rn, then the transition matrices PB→B′

and PB′→B are orthogonal.

Invertible matrix as transition matrix
If P =

[
p1 p2 · · · pn

]
is an invertible n× n matrix then P is the transition

matrix from the basis B = {p1,p2, . . . ,pn} to the standard basis
S = {e1, e2, . . . , en} for Rn.

Examples
See Examples 8, 9 on pages 436–437 of the textbook.
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