## SF1684 Algebra and Geometry

Lecture 3<br>Determinants, eigenvalues and eigenvectors

Bao Nguyen


## Outline

1 Determinants

2 Cross products

3 Eigenvalues and eigenvectors

## Outline

1 Determinants

## 2. Cross products

## 3 Eigenvalues and eigenvectors

## Definitions

## Permutations

A permutation of $n$ elements $\{1,2, \ldots, n\}$ is a rearrangement of these elements in a specific order, say $\sigma=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$. There are $n!=n(n-1) \cdots 1$ different permutations of $\{1,2, \ldots, n\}$.
An inversion is a pair $i<j$ such that $\sigma_{i}>\sigma_{j}$. The sign of $\sigma$ is defined as

$$
\operatorname{sgn}(\sigma)= \begin{cases}+1 & \text { if } \sigma \text { has an even number of inversions } \\ -1 & \text { if } \sigma \text { has an odd number of inversions. }\end{cases}
$$

## Definition of determinants

The determinant of an $n \times n$ matrix $A$ is

$$
\operatorname{det}(A)=\sum_{\sigma} \operatorname{sgn}(\sigma) a_{1 \sigma_{1}} a_{2 \sigma_{2}} \cdots a_{n \sigma_{n}},
$$

where $\sigma$ runs over all permutations of $\{1,2, \ldots, n\}$.

## Determinants of $2 \times 2$ and $3 \times 3$ matrices

## The $2 \times 2$ case

$$
\operatorname{det}(A)=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21} .
$$

## The $3 \times 3$ case

The $3 \times 3$ determinant can be written in terms of $2 \times 2$ determinants

$$
\begin{aligned}
\operatorname{det}(A) & =\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32} \\
& =a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) \\
& =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+a_{12}(-1)\left|\begin{array}{ll}
21 & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

## Definition using expansion by cofactors

Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix.

## Minors and cofactors

The $A_{i j}$ submatrix of $A$ is the $(n-1) \times(n-1)$ matrix obtained from $A$ by deleting its row and column containing $a_{i j}$ (that is, row $i$ and column $j$ ). Then $M_{i j}=\operatorname{det}\left(A_{i j}\right)$ is called the minor and $C_{i j}=(-1)^{i+j} M_{i j}$ the cofactor of entry $a_{i j}$.

## Recursive definition of determinants

If $A$ is a $1 \times 1$ matrix then $\operatorname{det}(A)=a_{11}$, else

$$
\operatorname{det}(A)=\sum_{j=1}^{n} a_{1 j}(-1)^{1+j} \operatorname{det}\left(A_{1 j}\right)=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n} .
$$

## Cofactor expansions

The determinant of $A$ can be obtained by a cofactor expansion along any row or any column. In particular, the expansion of the determinant along the $i$ th row of $A$ is

$$
\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n} .
$$

The expansion of the determinant along the $j$ th column of $A$ is

$$
\operatorname{det}(A)=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j} .
$$

## Find determinant using cofactor expansions

The cofactor expansion rewrites the determinant of a big matrix in terms of the determinants of smaller matrices. This method is especially applicable if a matrix has a row or a column with many zeros. Then we expand the determinant along this row or column.

## Example

Compute $\operatorname{det}(A)$ where $A=\left[\begin{array}{rrrr}1 & 0 & 2 & -1 \\ 3 & 1 & 0 & 2 \\ 2 & -2 & 0 & 4 \\ 1 & 3 & 1 & -2\end{array}\right]$.
Solution We use the expansion along the third column (omitting zero terms)

$$
\begin{aligned}
\left|\begin{array}{rrrr}
1 & 0 & 2 & -1 \\
3 & 1 & 0 & 2 \\
2 & -2 & 0 & 4 \\
1 & 3 & 1 & -2
\end{array}\right| & =2(-1)^{1+3}\left|\begin{array}{rrr}
3 & 1 & 2 \\
2 & -2 & 4 \\
1 & 3 & -2
\end{array}\right|+1(-1)^{4+3}\left|\begin{array}{rrr}
1 & 0 & -1 \\
3 & 1 & 2 \\
2 & -2 & 4
\end{array}\right| \\
& =2(-1)^{1+3} 0+1(-1)^{4+3} 16=-16 .
\end{aligned}
$$

## Special cases

## Matrix with one row or one column of zeros

If $A$ has one row or one column of zeros, then $\operatorname{det}(A)=0$.

## Triangular matrix

If $A$ is an $n \times n$ triangular matrix (upper triangular, lower triangular, or diagonal), then $\operatorname{det}(A)$ is the product of the diagonal entries of $A$

$$
\operatorname{det}(A)=a_{11} a_{22} \cdots a_{n n}
$$

## Elementary row operations and determinants

## Determinant of transpose

$$
\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A) .
$$

## Effect of elementary row operations on determinant

$B$ is obtained from $A$ by performing one elementary row operation.

$$
\begin{array}{l|l}
A \xrightarrow{R_{i} \leftrightarrow R_{j}} B & \begin{array}{l}
\operatorname{det}(B)=-\operatorname{det}(A) \\
A \xrightarrow{R_{i} \mapsto c R_{i}} B \text { for } c \neq 0
\end{array} \\
A \xrightarrow{R_{i} \mapsto R_{i}+c R_{j}} B \text { for } i \neq j & \begin{array}{l}
\operatorname{det}(B)=c \operatorname{det}(A) \\
\operatorname{det}(B)=\operatorname{det}(A)
\end{array}
\end{array}
$$

## Remark

We have similar conclusions for elementary column operations, since a column operation on $A$ has the same effect as the corresponding row operation on $A^{T}$.

## Find determinant using Gaussian elimination

We reduce the matrix to row echelon form, keeping track of how the determinant changes. The determinant of row echelon form, which is a triangular matrix, is the product of its diagonal entries.

## Example

Compute $\operatorname{det}(A)$ where $A=\left[\begin{array}{lll}2 & 0 & 4 \\ 3 & 0 & 1 \\ 1 & 3 & 2\end{array}\right]$.
Solution

$$
\begin{gathered}
\left|\begin{array}{lll}
2 & 0 & 4 \\
3 & 0 & 1 \\
1 & 3 & 2
\end{array}\right| \stackrel{R_{1} \mapsto(1 / 2) R_{1}}{=} 2\left|\begin{array}{lll}
1 & 0 & 2 \\
3 & 0 & 1 \\
1 & 3 & 2
\end{array}\right| \stackrel{\substack{R_{2} \mapsto R_{2}+(-3) R_{1} \\
R_{3} \mapsto R_{3}+(-1) R_{1}}}{=} 2\left|\begin{array}{rrr}
1 & 0 & 2 \\
0 & 0 & -5 \\
0 & 3 & 0
\end{array}\right| \\
R_{2} \leftrightarrow R_{3} \\
= \\
2(-1)\left|\begin{array}{rrr}
1 & 0 & 2 \\
0 & 3 & 0 \\
0 & 0 & -5
\end{array}\right|=2(-1)(-15)=30 .
\end{gathered}
$$

The last matrix is triangular, so we can stop the process and compute its determinant.

## Properties of determinants

## Theorem

(i) If $A$ has two identical rows or columns, then $\operatorname{det}(A)=0$.
(ii) If $A$ has two proportional rows or columns, then $\operatorname{det}(A)=0$.
(iii) $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$ for $c \in \mathbb{R}$.

Since the effect of elementary row operations on determinant, the determinant of a square matrix $A$ and the determinant of its reduced echelon form $R$ are both zero or both nonzero. Thus, we have the result

## Determinant and invertibility

$A$ is invertible if and only if $\operatorname{det}(A) \neq 0$.

## Determinant of product

If $A$ and $B$ are square matrices of the same size, then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

As a consequence, $\operatorname{det}\left(A^{m}\right)=(\operatorname{det}(A))^{m}$ for $m \in \mathbb{N}$.

## Determinant of inverse

If $A$ is invertible, then

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

## Fundamental theorem of invertible matrices (cont.)

If $A$ is an $n \times n$ matrix, then the following statements are equivalent
a The reduced echelon form of $A$ is $I_{n}$.
b $A$ is a product of elementary matrices.
(c) $A$ is invertible.
d $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) $A \mathbf{x}=\mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^{n}$.
(f) $A \mathbf{x}=\mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^{n}$.
(g) The column vectors of $A$ are linearly independent.
(h) The row vectors of $A$ are linearly independent.
(i) $\operatorname{det}(A) \neq 0$.

## Cramer's rule

## Adjoint matrix

The matrix formed by all of the cofactors $C_{i j}$ of the entries $a_{i j}$ is called the matrix of cofactors (cofactor matrix) from $A$

$$
C=\left[\begin{array}{cccc}
C_{11} & C_{12} & \cdots & C_{1 n} \\
C_{21} & C_{22} & \cdots & C_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{n 1} & C_{n 2} & \cdots & C_{n n}
\end{array}\right]
$$

The transpose of this matrix is called the adjoint (or adjugate) of $A$ and is denoted by $\operatorname{adj}(A)$

$$
\operatorname{adj}(A)=C^{T}
$$

## Inverse formula

If $A$ is invertible, then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

## Cramer's rule

Let $A$ be an $n \times n$ matrix and $\mathbf{b}$ be an $n \times 1$ column vector. The linear system $A \mathbf{x}=\mathbf{b}$ has a unique solution if and only if $\operatorname{det}(A) \neq 0$, in which case the solution is

$$
\mathbf{x}=\left(\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}, \frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}, \ldots, \frac{\operatorname{det}\left(A_{n}\right)}{\operatorname{det}(A)}\right),
$$

where $A_{j}$ is the matrix formed by replacing the $j$ th column of $A$ by $\mathbf{b}$.
The Cramer's rule is useful when solving linear systems with symbolic coefficients.

## Example

Solve for $x$ and $y$ in terms of $x^{\prime}$ and $y^{\prime}$

$$
\left[\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right], \quad \theta, x, y, x^{\prime}, y^{\prime} \in \mathbb{R}
$$

Solution The determinant of the coefficient matrix is

$$
\left|\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right|=\cos ^{2}(\theta)+\sin ^{2}(\theta)=1
$$

Thus, Cramer's rule yields

$$
\begin{aligned}
x & =\left|\begin{array}{rr}
x^{\prime} & -\sin (\theta) \\
y^{\prime} & \cos (\theta)
\end{array}\right|=x^{\prime} \cos (\theta)+y^{\prime} \sin (\theta) \\
\text { and } \quad y & =\left|\begin{array}{ll}
\cos (\theta) & x^{\prime} \\
\sin (\theta) & y^{\prime}
\end{array}\right|=y^{\prime} \cos (\theta)-x^{\prime} \sin (\theta) .
\end{aligned}
$$

## Determinants as area or volume

## Theorem

(i) If $A$ is a $2 \times 2$ matrix, the area of the parallelogram determined by the column vectors of $A$ is $|\operatorname{det}(A)|$.
(ii) If $A$ is a $3 \times 3$ matrix, the volume of the parallelepiped determined by the column vectors of $A$ is $|\operatorname{det}(A)|$.

## Example

Find the area of the triangle with vertices $A(-1,-2), B(0,4)$ and $C(3,0)$.
Solution The area of the triangle is half of the parallelogram that has adjacent sides $\overrightarrow{A B}=(1,6)$ and $\overrightarrow{A C}=(4,2)$. Thus

$$
\text { area } \triangle A B C=\frac{1}{2}\left|\operatorname{det}\left[\begin{array}{ll}
1 & 4 \\
6 & 2
\end{array}\right]\right|=\frac{1}{2}|-22|=11 \text {. }
$$

## Outline

## 1 Determinants

2 Cross products

## 3 Eigenvalues and eigenvectors

## Cross products

## Definition

If $\mathbf{u}$ and $\mathbf{v}$ are vectors in $\mathbb{R}^{3}$, then the cross product of $\mathbf{u}$ with $\mathbf{v}$ is the vector in $\mathbb{R}^{3}$ defined by

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left(\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right|,-\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|,\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|\right) \\
& =\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right) .
\end{aligned}
$$

We can write $\mathbf{u} \times \mathbf{v}$ in the form of a $3 \times 3$ determinant as

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{lll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| \mathbf{e}_{1}-\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| \mathbf{e}_{2}+\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| \mathbf{e}_{3}
$$

where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are standard unit vectors in $\mathbb{R}^{3}$.

## Theorem

The vector $\mathbf{u} \times \mathbf{v}$ is orthogonal to both $\mathbf{u}$ and $\mathbf{v}$, that is $\mathbf{u} \cdot(\mathbf{u} \times \mathbf{v})=0$ and $\mathbf{v} \cdot(\mathbf{u} \times \mathbf{v})=0$.

## Algebraic properties

If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ and $k \in \mathbb{R}$, then
(i) $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$
(ii) $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=(\mathbf{u} \times \mathbf{v})+(\mathbf{u} \times \mathbf{w})$
iii $(\mathbf{u}+\mathbf{v}) \times \mathbf{w}=(\mathbf{u} \times \mathbf{w})+(\mathbf{v} \times \mathbf{w})$
(iv $k(\mathbf{u} \times \mathbf{x})=(k \mathbf{u}) \times \mathbf{v}=\mathbf{u} \times(k \mathbf{v})$
(v) $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$
vi $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$

## Warning

The cross product is neither commutative nor associative.

## Direction of cross product

The direction of $\mathbf{u} \times \mathbf{v}$ is given by the right-hand rule: If the fingers of your right hand curl in the direction of rotation (through an angle less than $180^{\circ}$ ) from $\mathbf{u}$ to $\mathbf{v}$, then your thumb points in the direction of $\mathbf{u} \times \mathbf{v}$.

## Length of cross product

If $\theta$ is the angle between the vectors $\mathbf{u}$ and $\mathbf{v}$, then

$$
\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin (\theta)
$$

which is also equal to the area of the parallelogram determined by $\mathbf{u}$ and $\mathbf{v}$.

## Corollary

Two nonzero vectors $\mathbf{u}$ and $\mathbf{v}$ are parallel if and only if $\mathbf{u} \times \mathbf{v}=\mathbf{0}$.

## Outline

## 1 Determinants

## 2. Cross products

3 Eigenvalues and eigenvectors

## Eigenvalues and eigenvectors

## Definition

Let $A$ be an $n \times n$ matrix. A scalar $\lambda$ is called an eigenvalue of $A$ if there is a nonzero vector $\mathbf{x}$ such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

Such an $\mathbf{x}$ is called an eigenvector of $A$ corresponding to $\lambda$.

## Eigenspace

The eigenspace (the set of all eigenvectors) of $A$ corresponding to $\lambda$ is the solution space of the homogeneous linear system $\left(\lambda I_{n}-A\right) \mathbf{x}=\mathbf{0}$.

## Finding eigenvalues

The linear system $\left(\lambda I_{n}-A\right) \mathbf{x}=\mathbf{0}$ has nontrivial solutions if and only if $\operatorname{det}\left(\lambda I_{n}-A\right)=0$. Thus, we have the result

## Theorem

The following statements are equivalent
a $\lambda$ is an eigenvalue of $A$.
(b) $\lambda$ is a solution of the equation $\operatorname{det}\left(\lambda I_{n}-A\right)=0$.
c The linear system $\left(\lambda I_{n}-A\right) \mathbf{x}=\mathbf{0}$ has nontrivial solutions.

## Characteristic polynomial

The expression $p(\lambda)=\operatorname{det}\left(\lambda I_{n}-A\right)$ is a polynomial in the variable $\lambda$ of degree $n$. We call this polynomial the characteristic polynomial of $A$.

## Remark

The matrix $A$ has exactly $n$ eigenvalues (not necessarily distinct and could be complex numbers).

## Fundamental theorem of invertible matrices (cont.)

If $A$ is an $n \times n$ matrix, then the following statements are equivalent
a The reduced echelon form of $A$ is $I_{n}$.
b $A$ is a product of elementary matrices.
(c) $A$ is invertible.
d $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) $A \mathbf{x}=\mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^{n}$.
(f) $A \mathbf{x}=\mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^{n}$.
g The column vectors of $A$ are linearly independent.
(h) The row vectors of $A$ are linearly independent.
(i) $\operatorname{det}(A) \neq 0$.
(i) $\lambda=0$ is not an eigenvalue of $A$.

## Special cases

## Eigenvalues of triangular matrix

If $A$ is an $n \times n$ triangular matrix (upper triangular, lower triangular, or diagonal) with diagonal entries $a_{11}, a_{22}, \ldots, a_{n n}$, then the characteristic polynomial of $A$ is

$$
\operatorname{det}\left(\lambda I_{n}-A\right)=\left(\lambda-a_{11}\right)\left(\lambda-a_{22}\right) \cdots\left(\lambda-a_{n n}\right)
$$

It implies that the eigenvalues of $A$ are

$$
\lambda_{1}=a_{11}, \quad \lambda_{2}=a_{22}, \quad \ldots, \quad \lambda_{n}=a_{n n} .
$$

## Eigenvalues of matrix power

If $\lambda$ is an eigenvalue of a matrix $A$ and $\mathbf{x}$ is a corresponding eigenvector, then the following holds for any positive integer $k$

$$
A^{k} \mathbf{x}=\lambda^{k} \mathbf{x} .
$$

Consequently, $\lambda^{k}$ is an eigenvalue of $A^{k}$ with corresponding eigenvector $\mathbf{x}$.

## Factoring the characteristic polynomial

Let $A$ be an $n \times n$ matrix, and let $p(\lambda)=\operatorname{det}\left(\lambda I_{n}-A\right)$ be its characteristic polynomial.

## Algebraic multiplicity of eigenvalues

The multiplicity of a root $\lambda$ of $p(\lambda)$ is called the algebraic multiplicity of the eigenvalue $\lambda$.

## Theorem

If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are $n$ eigenvalues (counted with their algebraic multiplicities), then $p(\lambda)$ can be expressed as

$$
\operatorname{det}\left(\lambda I_{n}-A\right)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right)
$$

Consequently, if $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the distinct eigenvalues, then

$$
\operatorname{det}\left(\lambda I_{n}-A\right)=\left(\lambda-\lambda_{1}\right)^{m_{1}}\left(\lambda-\lambda_{2}\right)^{m_{2}} \cdots\left(\lambda-\lambda_{k}\right)^{m_{k}},
$$

where $m_{1}, m_{2}, \ldots, m_{k}$ are positive integers satisfying $m_{1}+m_{2}+\cdots+m_{k}=n$.

## Determinant and trace in terms of eigenvalues

(i) $\operatorname{det}(A)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$.
(ii) $\operatorname{tr}(A)=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}$.

## Remark

By the Theorem, the expansion of $p(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right)$ has form

$$
p(\lambda)=\lambda^{n}-\operatorname{tr}(A) \lambda^{n-1}+\cdots+(-1)^{n} \operatorname{det}(A) .
$$

It implies that
(i) $\operatorname{det}(A)$ is the constant term in $p(\lambda)$ multiplied by $(-1)^{n}$.
(ii) $\operatorname{tr}(A)$ is the negative of the coefficient of $\lambda^{n-1}$.

## Eigenvalues of a $2 \times 2$ matrix

Consider a general $2 \times 2$ matrix with real entries $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. The characteristic polynomial of $A$ is

$$
p(\lambda)=\operatorname{det}(\lambda I-A)=\left|\begin{array}{cc}
\lambda-a & -b \\
-c & \lambda-d
\end{array}\right|=\lambda^{2}-(a+d) \lambda+(a d-b c) .
$$

Using the formulas $\operatorname{tr}(A)=a+d$ and $\operatorname{det}(A)=a d-b c$ to write $p$ as

$$
p(\lambda)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A) .
$$

Since $p(\lambda)$ is a quadratic polynomial with real coefficients, we have

## Number of eigenvalues

(1) $A$ has two distinct real eigenvalues if $\operatorname{tr}(A)^{2}-4 \operatorname{det}(A)>0$.
(2) $A$ has one real eigenvalue of multiplicity 2 if $\operatorname{tr}(A)^{2}-4 \operatorname{det}(A)=0$.
(3) $A$ has two complex conjugate eigenvalues if $\operatorname{tr}(A)^{2}-4 \operatorname{det}(A)<0$.

## Eigenvalues of $2 \times 2$ symmetric matrix

If $A=\left[\begin{array}{ll}a & b \\ b & d\end{array}\right]$ is a symmetric matrix with real entries, then $A$ has real
eigenvalues. Moreover, $A$ has one repeated eigenvalue if and only if $a=d$ and $b=0$, in which case the eigenvalue is $\lambda=a$.

## Eigenspaces of $2 \times 2$ symmetric matrix

(1) If $A$ has one repeated eigenvalue, then the eigenspace is all of $\mathbb{R}^{2}$.

2 If $A$ has two distinct real eigenvalues, then the eigenspaces are perpendicular lines through the origin of $\mathbb{R}^{2}$.

