SF1684 Algebra and Geometry

Lecture 3 Determinants, eigenvalues and eigenvectors

Bao Nguyen

SF1	

Outline

1 Determinants

2 Cross products

3 Eigenvalues and eigenvectors

イロト イヨト イヨト イヨト

Outline

1 Determinants

2 Cross products

3 Eigenvalues and eigenvectors

イロト イヨト イヨト イヨト

Definitions

Permutations

A permutation of *n* elements $\{1, 2, ..., n\}$ is a rearrangement of these elements in a specific order, say $\sigma = \{\sigma_1, \sigma_2, ..., \sigma_n\}$. There are $n! = n(n-1) \cdots 1$ different permutations of $\{1, 2, ..., n\}$.

An **inversion** is a pair i < j such that $\sigma_i > \sigma_j$. The sign of σ is defined as

 $\mathrm{sgn}(\sigma) = \begin{cases} +1 & \text{if } \sigma \text{ has an even number of inversions,} \\ -1 & \text{if } \sigma \text{ has an odd number of inversions.} \end{cases}$

Definition of determinants

The determinant of an $n \times n$ matrix A is

$$\det(A) = \sum_{\sigma} \operatorname{sgn}(\sigma) a_{1\sigma_1} a_{2\sigma_2} \cdots a_{n\sigma_n},$$

where σ runs over all permutations of $\{1, 2, \ldots, n\}$.

	684

・ロン ・回 ・ ・ ヨン・

Determinants of 2×2 and 3×3 matrices

The 2×2 case

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

The 3×3 case

The 3×3 determinant can be written in terms of 2×2 determinants

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$
$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$
$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12}(-1)\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

イロト イヨト イヨト イヨト

Definition using expansion by cofactors

Let $A = [a_{ij}]$ be an $n \times n$ matrix.

Minors and cofactors

The A_{ij} submatrix of A is the $(n-1) \times (n-1)$ matrix obtained from A by deleting its row and column containing a_{ij} (that is, row i and column j). Then $M_{ij} = \det(A_{ij})$ is called the **minor** and $C_{ij} = (-1)^{i+j}M_{ij}$ the **cofactor** of entry a_{ij} .

Recursive definition of determinants

If A is a 1×1 matrix then $det(A) = a_{11}$, else

$$\det(A) = \sum_{j=1}^{n} a_{1j}(-1)^{1+j} \det(A_{1j}) = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}.$$

Cofactor expansions

The determinant of A can be obtained by a cofactor expansion along any row or any column. In particular, the expansion of the determinant along the *i*th row of A is

$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}.$$

The expansion of the determinant along the *j*th column of *A* is

$$\det(A)=a_{1j}C_{1j}+a_{2j}C_{2j}+\cdots+a_{nj}C_{nj}.$$

Find determinant using cofactor expansions

The cofactor expansion rewrites the determinant of a big matrix in terms of the determinants of smaller matrices. This method is especially applicable if a matrix has a row or a column with **many zeros**. Then we expand the determinant along this row or column.

Example

Compute
$$det(A)$$
 where $A = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 3 & 1 & 0 & 2 \\ 2 & -2 & 0 & 4 \\ 1 & 3 & 1 & -2 \end{bmatrix}$.

Solution We use the expansion along the third column (omitting zero terms)

$$\begin{vmatrix} 1 & 0 & 2 & -1 \\ 3 & 1 & 0 & 2 \\ 2 & -2 & 0 & 4 \\ 1 & 3 & 1 & -2 \end{vmatrix} = 2(-1)^{1+3} \begin{vmatrix} 3 & 1 & 2 \\ 2 & -2 & 4 \\ 1 & 3 & -2 \end{vmatrix} + 1(-1)^{4+3} \begin{vmatrix} 1 & 0 & -1 \\ 3 & 1 & 2 \\ 2 & -2 & 4 \end{vmatrix}$$
$$= 2(-1)^{1+3}0 + 1(-1)^{4+3}16 = -16.$$

・ロ> < 回> < 三> < 三> < 三
 ・<

Special cases

Matrix with one row or one column of zeros

If *A* has one row or one column of zeros, then det(A) = 0.

Triangular matrix

If *A* is an $n \times n$ triangular matrix (upper triangular, lower triangular, or diagonal), then det(A) is the product of the diagonal entries of *A*

 $\det(A)=a_{11}a_{22}\cdots a_{nn}.$

Elementary row operations and determinants

Determinant of transpose

 $\det(A^T) = \det(A).$

Effect of elementary row operations on determinant

B is obtained from A by performing one elementary row operation.

 $\begin{array}{c|c} A \xrightarrow{R_i \leftrightarrow R_j} B \\ A \xrightarrow{R_i \mapsto cR_i} B \text{ for } c \neq 0 \\ A \xrightarrow{R_i \mapsto R_i + cR_j} B \text{ for } i \neq j \end{array} \qquad \begin{array}{c} \det(B) = -\det(A) \\ \det(B) = c \det(A) \\ \det(B) = \det(A) \end{array}$

Remark

We have similar conclusions for **elementary column operations**, since a column operation on A has the same effect as the corresponding row operation on A^{T} .

SF1684	Lecture 3		Nov 2	2018	10/31
				-	-) 40-

ノロト ノロト ノロト ノロト

Find determinant using Gaussian elimination

We reduce the matrix to row echelon form, keeping track of how the determinant changes. The determinant of row echelon form, which is a triangular matrix, is the product of its diagonal entries.

Example

Compute
$$det(A)$$
 where $A = \begin{bmatrix} 2 & 0 & 4 \\ 3 & 0 & 1 \\ 1 & 3 & 2 \end{bmatrix}$

Solution

The last matrix is triangular, so we can stop the process and compute its determinant.

Properties of determinants

Theorem

- If A has two identical rows or columns, then det(A) = 0.
- iii If A has two proportional rows or columns, then det(A) = 0.
- iii $\det(cA) = c^n \det(A)$ for $c \in \mathbb{R}$.

Since the effect of elementary row operations on determinant, the determinant of a square matrix A and the determinant of its reduced echelon form R are both zero or both nonzero. Thus, we have the result

Determinant and invertibility

A is invertible if and only if $det(A) \neq 0$.

Determinant of product

If A and B are square matrices of the same size, then

 $\det(AB) = \det(A) \det(B).$

As a consequence, $det(A^m) = (det(A))^m$ for $m \in \mathbb{N}$.

Determinant of inverse

If *A* is invertible, then

$$\det(A^{-1}) = \frac{1}{\det(A)}.$$

Image: Image:

Fundamental theorem of invertible matrices (cont.)

If A is an $n \times n$ matrix, then the following statements are equivalent

- a The reduced echelon form of A is I_n .
- **b** A is a product of elementary matrices.
- A is invertible.
- **d** $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- **e** $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^n$.
- **f** $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^n$.
- g The column vectors of A are linearly independent.
- **h** The row vectors of A are linearly independent.
- i $det(A) \neq 0$.

Cramer's rule

Adjoint matrix

The matrix formed by all of the cofactors C_{ij} of the entries a_{ij} is called the matrix of cofactors (cofactor matrix) from A

$$C = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}$$

The transpose of this matrix is called the adjoint (or adjugate) of A and is denoted by adj(A)

$$\operatorname{adj}(A) = C^T.$$

Inverse formula

If A is invertible, then

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A).$$

SF1684

Cramer's rule

Let *A* be an $n \times n$ matrix and **b** be an $n \times 1$ column vector. The linear system $A\mathbf{x} = \mathbf{b}$ has a unique solution if and only if $det(A) \neq 0$, in which case the solution is

$$\mathbf{x} = \left(\frac{\det(A_1)}{\det(A)}, \frac{\det(A_2)}{\det(A)}, \dots, \frac{\det(A_n)}{\det(A)}\right),$$

where A_j is the matrix formed by replacing the *j*th column of A by **b**.

The Cramer's rule is useful when solving linear systems with symbolic coefficients.

Example

Solve for x and y in terms of x' and y'

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}, \quad \theta, x, y, x', y' \in \mathbb{R}.$$

Solution The determinant of the coefficient matrix is

$$\begin{vmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{vmatrix} = \cos^2(\theta) + \sin^2(\theta) = 1.$$

Thus, Cramer's rule yields

$$x = \begin{vmatrix} x' & -\sin(\theta) \\ y' & \cos(\theta) \end{vmatrix} = x'\cos(\theta) + y'\sin(\theta)$$

and
$$y = \begin{vmatrix} \cos(\theta) & x' \\ \sin(\theta) & y' \end{vmatrix} = y'\cos(\theta) - x'\sin(\theta).$$

Determinants as area or volume

Theorem

- If A is a 2 × 2 matrix, the area of the parallelogram determined by the column vectors of A is | det(A)|.
- If A is a 3 × 3 matrix, the volume of the parallelepiped determined by the column vectors of A is |det(A)|.

Example

Find the area of the triangle with vertices A(-1, -2), B(0, 4) and C(3, 0).

Solution The area of the triangle is half of the parallelogram that has adjacent sides $\overrightarrow{AB} = (1, 6)$ and $\overrightarrow{AC} = (4, 2)$. Thus

area
$$\triangle ABC = \frac{1}{2} \left| \det \begin{bmatrix} 1 & 4 \\ 6 & 2 \end{bmatrix} \right| = \frac{1}{2} \left| -22 \right| = 11.$$

Outline

1 Determinants

2 Cross products

3 Eigenvalues and eigenvectors

イロト イヨト イヨト イヨト

Cross products

Definition

If u and v are vectors in $\mathbb{R}^3,$ then the cross product of u with v is the vector in \mathbb{R}^3 defined by

$$\mathbf{u} \times \mathbf{v} = \left(\begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \right)$$
$$= (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1).$$

We can write $u \times v$ in the form of a 3 \times 3 determinant as

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{e}_1 - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{e}_2 + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{e}_3,$$

where $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are standard unit vectors in \mathbb{R}^3 .

Theorem

The vector $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} , that is $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$ and $\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$.

Algebraic properties

If
$$\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$$
 and $k \in \mathbb{R}$, then
(i) $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$
(ii) $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$
(iii) $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$
(iv) $k(\mathbf{u} \times \mathbf{x}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$
(v) $k(\mathbf{u} \times \mathbf{x}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$
(v) $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$
(v) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$

Warning

The cross product is neither commutative nor associative.

1684	

• • • • • • • • • • • • • •

Direction of cross product

The direction of $\mathbf{u} \times \mathbf{v}$ is given by the **right-hand rule**: If the fingers of your right hand curl in the direction of rotation (through an angle less than 180°) from \mathbf{u} to \mathbf{v} , then your thumb points in the direction of $\mathbf{u} \times \mathbf{v}$.

Length of cross product

If θ is the angle between the vectors **u** and **v**, then

$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \, \|\mathbf{v}\| \sin(\theta),$$

which is also equal to the area of the parallelogram determined by \mathbf{u} and \mathbf{v} .

Corollary

Two nonzero vectors \mathbf{u} and \mathbf{v} are parallel if and only if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

s			

(D) (A) (A) (A)

Outline

1 Determinants

2 Cross products

3 Eigenvalues and eigenvectors

(日)

Eigenvalues and eigenvectors

Definition

Let *A* be an $n \times n$ matrix. A scalar λ is called an eigenvalue of *A* if there is a **nonzero** vector **x** such that

 $A\mathbf{x} = \lambda \mathbf{x}.$

Such an **x** is called an eigenvector of *A* corresponding to λ .

Eigenspace

The eigenspace (the set of all eigenvectors) of *A* corresponding to λ is the solution space of the homogeneous linear system $(\lambda I_n - A)\mathbf{x} = \mathbf{0}$.

Finding eigenvalues

The linear system $(\lambda I_n - A)\mathbf{x} = \mathbf{0}$ has nontrivial solutions if and only if $\det(\lambda I_n - A) = 0$. Thus, we have the result

Theorem

The following statements are equivalent

- a λ is an eigenvalue of A.
- **b** λ is a solution of the equation $det(\lambda I_n A) = 0$.
- **c** The linear system $(\lambda I_n A)\mathbf{x} = \mathbf{0}$ has nontrivial solutions.

Characteristic polynomial

The expression $p(\lambda) = \det(\lambda I_n - A)$ is a polynomial in the variable λ of degree *n*. We call this polynomial the characteristic polynomial of *A*.

Remark

SF1684

The matrix A has exactly n eigenvalues (not necessarily distinct and could be complex numbers).

4	•	• 6*	•	• =	•	1	8.▶	
							Nov	v 20

25/31

Fundamental theorem of invertible matrices (cont.)

If A is an $n \times n$ matrix, then the following statements are equivalent

- a The reduced echelon form of A is I_n .
- **b** A is a product of elementary matrices.
- c A is invertible.
- **d** $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- **e** $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^n$.
- **f** $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^n$.
- g The column vectors of A are linearly independent.
- h The row vectors of A are linearly independent.
- i $det(A) \neq 0$.
- (j) $\lambda = 0$ is not an eigenvalue of A.

Special cases

Eigenvalues of triangular matrix

If *A* is an $n \times n$ triangular matrix (upper triangular, lower triangular, or diagonal) with diagonal entries $a_{11}, a_{22}, \ldots, a_{nn}$, then the characteristic polynomial of *A* is

$$\det(\lambda I_n - A) = (\lambda - a_{11})(\lambda - a_{22}) \cdots (\lambda - a_{nn}).$$

It implies that the eigenvalues of A are

$$\lambda_1 = a_{11}, \quad \lambda_2 = a_{22}, \quad \ldots, \quad \lambda_n = a_{nn}.$$

Eigenvalues of matrix power

If λ is an eigenvalue of a matrix *A* and **x** is a corresponding eigenvector, then the following holds for any positive integer *k*

$$A^k \mathbf{x} = \lambda^k \mathbf{x}.$$

Consequently, λ^k is an eigenvalue of A^k with corresponding eigenvector **x**.

F1	

・ロト ・回ト ・ヨト ・ヨト

Factoring the characteristic polynomial

Let *A* be an $n \times n$ matrix, and let $p(\lambda) = \det(\lambda I_n - A)$ be its characteristic polynomial.

Algebraic multiplicity of eigenvalues

The multiplicity of a root λ of $p(\lambda)$ is called the algebraic multiplicity of the eigenvalue λ .

Theorem

If $\lambda_1, \lambda_2, ..., \lambda_n$ are *n* eigenvalues (counted with their algebraic multiplicities), then $p(\lambda)$ can be expressed as

$$\det(\lambda I_n - A) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n).$$

Consequently, if $\lambda_1, \lambda_2, \ldots, \lambda_k$ are the distinct eigenvalues, then

$$\det(\lambda I_n - A) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_k)^{m_k},$$

where m_1, m_2, \ldots, m_k are positive integers satisfying $m_1 + m_2 + \cdots + m_k = n$.

・ロト ・回ト ・ヨト ・ヨト

Determinant and trace in terms of eigenvalues

$$i \quad \det(A) = \lambda_1 \lambda_2 \cdots \lambda_n.$$

(ii)
$$\operatorname{tr}(A) = \lambda_1 + \lambda_2 + \cdots + \lambda_n$$
.

Remark

By the Theorem, the expansion of $p(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$ has form

$$p(\lambda) = \lambda^n - \operatorname{tr}(A)\lambda^{n-1} + \dots + (-1)^n \det(A).$$

It implies that

- (i) det(A) is the constant term in $p(\lambda)$ multiplied by $(-1)^n$.
- (i) tr(A) is the negative of the coefficient of λ^{n-1} .

Eigenvalues of a 2×2 matrix

Consider a general 2 × 2 matrix with real entries $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. The characteristic polynomial of *A* is

$$p(\lambda) = \det(\lambda I - A) = \begin{vmatrix} \lambda - a & -b \\ -c & \lambda - d \end{vmatrix} = \lambda^2 - (a + d)\lambda + (ad - bc).$$

Using the formulas tr(A) = a + d and det(A) = ad - bc to write p as

$$p(\lambda) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A).$$

Since $p(\lambda)$ is a quadratic polynomial with real coefficients, we have

Number of eigenvalues

- 1 *A* has two distinct real eigenvalues if $tr(A)^2 4 det(A) > 0$.
- 2 *A* has one real eigenvalue of multiplicity 2 if $tr(A)^2 4 det(A) = 0$.
- **3** A has two complex conjugate eigenvalues if $tr(A)^2 4 det(A) < 0$.

Eigenvalues of 2×2 symmetric matrix

If $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$ is a symmetric matrix with real entries, then *A* has real eigenvalues. Moreover, *A* has one repeated eigenvalue if and only if a = d and b = 0, in which case the eigenvalue is $\lambda = a$.

Eigenspaces of 2×2 symmetric matrix

- 1) If A has one repeated eigenvalue, then the eigenspace is all of \mathbb{R}^2 .
- 2 If A has two distinct real eigenvalues, then the eigenspaces are perpendicular lines through the origin of ℝ².