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Definitions

Permutations
A permutation of n elements {1, 2, . . . , n} is a rearrangement of these
elements in a specific order, say σ = {σ1, σ2, . . . , σn}. There are
n! = n(n− 1) · · · 1 different permutations of {1, 2, . . . , n}.
An inversion is a pair i < j such that σi > σj. The sign of σ is defined as

sgn(σ) =

{
+1 if σ has an even number of inversions,
−1 if σ has an odd number of inversions.

Definition of determinants
The determinant of an n× n matrix A is

det(A) =
∑
σ

sgn(σ)a1σ1 a2σ2 · · · anσn ,

where σ runs over all permutations of {1, 2, . . . , n}.
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Determinants of 2× 2 and 3× 3 matrices

The 2× 2 case

det(A) =
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21.

The 3× 3 case
The 3× 3 determinant can be written in terms of 2× 2 determinants

det(A) =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a12a21a33 − a11a23a32

= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

= a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣+ a12(−1)
∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣
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Definition using expansion by cofactors

Let A = [aij] be an n× n matrix.

Minors and cofactors
The Aij submatrix of A is the (n− 1)× (n− 1) matrix obtained from A by
deleting its row and column containing aij (that is, row i and column j). Then
Mij = det(Aij) is called the minor and Cij = (−1)i+jMij the cofactor of entry aij.

Recursive definition of determinants
If A is a 1× 1 matrix then det(A) = a11, else

det(A) =
n∑

j=1

a1j(−1)1+j det(A1j) = a11C11 + a12C12 + · · ·+ a1nC1n.
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Cofactor expansions
The determinant of A can be obtained by a cofactor expansion along any row
or any column. In particular, the expansion of the determinant along the ith
row of A is

det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin.

The expansion of the determinant along the jth column of A is

det(A) = a1jC1j + a2jC2j + · · ·+ anjCnj.
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Find determinant using cofactor expansions
The cofactor expansion rewrites the determinant of a big matrix in terms of
the determinants of smaller matrices. This method is especially applicable if a
matrix has a row or a column with many zeros. Then we expand the
determinant along this row or column.

Example

Compute det(A) where A =


1 0 2 −1
3 1 0 2
2 −2 0 4
1 3 1 −2

.

Solution We use the expansion along the third column (omitting zero terms)∣∣∣∣∣∣∣∣
1 0 2 −1
3 1 0 2
2 −2 0 4
1 3 1 −2

∣∣∣∣∣∣∣∣ = 2(−1)1+3

∣∣∣∣∣∣
3 1 2
2 −2 4
1 3 −2

∣∣∣∣∣∣+ 1(−1)4+3

∣∣∣∣∣∣
1 0 −1
3 1 2
2 −2 4

∣∣∣∣∣∣
= 2(−1)1+30 + 1(−1)4+316 = −16.
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Special cases

Matrix with one row or one column of zeros
If A has one row or one column of zeros, then det(A) = 0.

Triangular matrix
If A is an n× n triangular matrix (upper triangular, lower triangular, or
diagonal), then det(A) is the product of the diagonal entries of A

det(A) = a11a22 · · · ann.
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Elementary row operations and determinants

Determinant of transpose

det(AT) = det(A).

Effect of elementary row operations on determinant
B is obtained from A by performing one elementary row operation.

A
Ri↔Rj−−−−→ B det(B) = −det(A)

A Ri 7→cRi−−−−→ B for c 6= 0 det(B) = c det(A)

A
Ri 7→Ri+cRj−−−−−−→ B for i 6= j det(B) = det(A)

Remark
We have similar conclusions for elementary column operations, since a
column operation on A has the same effect as the corresponding row
operation on AT .
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Find determinant using Gaussian elimination
We reduce the matrix to row echelon form, keeping track of how the
determinant changes. The determinant of row echelon form, which is a
triangular matrix, is the product of its diagonal entries.

Example

Compute det(A) where A =

2 0 4
3 0 1
1 3 2

.

Solution ∣∣∣∣∣∣
2 0 4
3 0 1
1 3 2

∣∣∣∣∣∣ R1 7→(1/2)R1
= 2

∣∣∣∣∣∣
1 0 2
3 0 1
1 3 2

∣∣∣∣∣∣
R2 7→R2+(−3)R1
R3 7→R3+(−1)R1

= 2

∣∣∣∣∣∣
1 0 2
0 0 −5
0 3 0

∣∣∣∣∣∣
R2↔R3= 2(−1)

∣∣∣∣∣∣
1 0 2
0 3 0
0 0 −5

∣∣∣∣∣∣ = 2(−1)(−15) = 30.

The last matrix is triangular, so we can stop the process and compute its
determinant.
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Properties of determinants

Theorem
i If A has two identical rows or columns, then det(A) = 0.
ii If A has two proportional rows or columns, then det(A) = 0.
iii det(cA) = cn det(A) for c ∈ R.

Since the effect of elementary row operations on determinant, the
determinant of a square matrix A and the determinant of its reduced echelon
form R are both zero or both nonzero. Thus, we have the result

Determinant and invertibility
A is invertible if and only if det(A) 6= 0.
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Determinant of product
If A and B are square matrices of the same size, then

det(AB) = det(A) det(B).

As a consequence, det(Am) =
(
det(A)

)m for m ∈ N.

Determinant of inverse
If A is invertible, then

det(A−1) =
1

det(A)
.
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Fundamental theorem of invertible matrices (cont.)
If A is an n× n matrix, then the following statements are equivalent

a The reduced echelon form of A is In.
b A is a product of elementary matrices.
c A is invertible.
d Ax = 0 has only the trivial solution.
e Ax = b is consistent for every b ∈ Rn.
f Ax = b has a unique solution for every b ∈ Rn.
g The column vectors of A are linearly independent.
h The row vectors of A are linearly independent.
i det(A) 6= 0.
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Cramer’s rule
Adjoint matrix
The matrix formed by all of the cofactors Cij of the entries aij is called the
matrix of cofactors (cofactor matrix) from A

C =


C11 C12 · · · C1n

C21 C22 · · · C2n
...

...
. . .

...
Cn1 Cn2 · · · Cnn

 .
The transpose of this matrix is called the adjoint (or adjugate) of A and is
denoted by adj(A)

adj(A) = CT .

Inverse formula
If A is invertible, then

A−1 =
1

det(A)
adj(A).
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Cramer’s rule
Let A be an n× n matrix and b be an n× 1 column vector. The linear system
Ax = b has a unique solution if and only if det(A) 6= 0, in which case the
solution is

x =

(
det(A1)

det(A)
,
det(A2)

det(A)
, . . . ,

det(An)

det(A)

)
,

where Aj is the matrix formed by replacing the jth column of A by b.

The Cramer’s rule is useful when solving linear systems with symbolic
coefficients.
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Example
Solve for x and y in terms of x′ and y′[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
=

[
x′

y′

]
, θ, x, y, x′, y′ ∈ R.

Solution The determinant of the coefficient matrix is∣∣∣∣cos(θ) − sin(θ)
sin(θ) cos(θ)

∣∣∣∣ = cos2(θ) + sin2(θ) = 1.

Thus, Cramer’s rule yields

x =

∣∣∣∣x′ − sin(θ)
y′ cos(θ)

∣∣∣∣ = x′ cos(θ) + y′ sin(θ)

and y =

∣∣∣∣cos(θ) x′

sin(θ) y′

∣∣∣∣ = y′ cos(θ)− x′ sin(θ).
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Determinants as area or volume

Theorem
i If A is a 2× 2 matrix, the area of the parallelogram determined by the

column vectors of A is |det(A)|.
ii If A is a 3× 3 matrix, the volume of the parallelepiped determined by the

column vectors of A is |det(A)|.

Example
Find the area of the triangle with vertices A(−1,−2),B(0, 4) and C(3, 0).

Solution The area of the triangle is half of the parallelogram that has adjacent
sides

−→
AB = (1, 6) and

−→
AC = (4, 2). Thus

area 4 ABC =
1
2

∣∣∣∣det[1 4
6 2

]∣∣∣∣ = 1
2
|−22| = 11.
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Cross products

Definition
If u and v are vectors in R3, then the cross product of u with v is the vector in
R3 defined by

u× v =

(∣∣∣∣u2 u3
v2 v3

∣∣∣∣ ,− ∣∣∣∣u1 u3
v1 v3

∣∣∣∣ , ∣∣∣∣u1 u2
v1 v2

∣∣∣∣)
= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

We can write u× v in the form of a 3× 3 determinant as

u× v =

∣∣∣∣∣∣
e1 e2 e3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ =
∣∣∣∣u2 u3
v2 v3

∣∣∣∣ e1 −
∣∣∣∣u1 u3
v1 v3

∣∣∣∣ e2 +

∣∣∣∣u1 u2
v1 v2

∣∣∣∣ e3,

where e1, e2, e3 are standard unit vectors in R3.
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Theorem
The vector u× v is orthogonal to both u and v, that is u · (u× v) = 0 and
v · (u× v) = 0.

Algebraic properties
If u, v,w ∈ R3 and k ∈ R, then

i u× v = −(v× u)
ii u× (v + w) = (u× v) + (u× w)

iii (u + v)× w = (u× w) + (v× w)

iv k(u× x) = (ku)× v = u× (kv)
v u · (v× w) = (u× v) · w
vi u× (v× w) = (u · w)v− (u · v)w

Warning
The cross product is neither commutative nor associative.
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Direction of cross product
The direction of u× v is given by the right-hand rule: If the fingers of your
right hand curl in the direction of rotation (through an angle less than 180◦)
from u to v, then your thumb points in the direction of u× v.

Length of cross product
If θ is the angle between the vectors u and v, then

‖u× v‖ = ‖u‖ ‖v‖ sin(θ),

which is also equal to the area of the parallelogram determined by u and v.

Corollary
Two nonzero vectors u and v are parallel if and only if u× v = 0.
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Eigenvalues and eigenvectors

Definition
Let A be an n× n matrix. A scalar λ is called an eigenvalue of A if there is a
nonzero vector x such that

Ax = λx.

Such an x is called an eigenvector of A corresponding to λ.

Eigenspace
The eigenspace (the set of all eigenvectors) of A corresponding to λ is the
solution space of the homogeneous linear system (λIn − A)x = 0.
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Finding eigenvalues
The linear system (λIn − A)x = 0 has nontrivial solutions if and only if
det(λIn − A) = 0. Thus, we have the result

Theorem
The following statements are equivalent

a λ is an eigenvalue of A.
b λ is a solution of the equation det(λIn − A) = 0.
c The linear system (λIn − A)x = 0 has nontrivial solutions.

Characteristic polynomial
The expression p(λ) = det(λIn − A) is a polynomial in the variable λ of degree
n. We call this polynomial the characteristic polynomial of A.

Remark
The matrix A has exactly n eigenvalues (not necessarily distinct and could be
complex numbers).
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Fundamental theorem of invertible matrices (cont.)
If A is an n× n matrix, then the following statements are equivalent

a The reduced echelon form of A is In.
b A is a product of elementary matrices.
c A is invertible.
d Ax = 0 has only the trivial solution.
e Ax = b is consistent for every b ∈ Rn.
f Ax = b has a unique solution for every b ∈ Rn.
g The column vectors of A are linearly independent.
h The row vectors of A are linearly independent.
i det(A) 6= 0.
j λ = 0 is not an eigenvalue of A.
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Special cases

Eigenvalues of triangular matrix
If A is an n× n triangular matrix (upper triangular, lower triangular, or diagonal)
with diagonal entries a11, a22, . . . , ann, then the characteristic polynomial of A is

det(λIn − A) = (λ− a11)(λ− a22) · · · (λ− ann).

It implies that the eigenvalues of A are

λ1 = a11, λ2 = a22, . . . , λn = ann.

Eigenvalues of matrix power
If λ is an eigenvalue of a matrix A and x is a corresponding eigenvector, then
the following holds for any positive integer k

Akx = λkx.

Consequently, λk is an eigenvalue of Ak with corresponding eigenvector x.
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Factoring the characteristic polynomial
Let A be an n× n matrix, and let p(λ) = det(λIn − A) be its characteristic
polynomial.

Algebraic multiplicity of eigenvalues
The multiplicity of a root λ of p(λ) is called the algebraic multiplicity of the
eigenvalue λ.

Theorem
If λ1, λ2, . . . , λn are n eigenvalues (counted with their algebraic multiplicities),
then p(λ) can be expressed as

det(λIn − A) = (λ− λ1)(λ− λ2) · · · (λ− λn).

Consequently, if λ1, λ2, . . . , λk are the distinct eigenvalues, then

det(λIn − A) = (λ− λ1)
m1(λ− λ2)

m2 · · · (λ− λk)
mk ,

where m1,m2, . . . ,mk are positive integers satisfying m1 + m2 + · · ·+ mk = n.
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Determinant and trace in terms of eigenvalues
i det(A) = λ1λ2 · · ·λn.
ii tr(A) = λ1 + λ2 + · · ·+ λn.

Remark
By the Theorem, the expansion of p(λ) = (λ−λ1)(λ−λ2) · · · (λ−λn) has form

p(λ) = λn − tr(A)λn−1 + · · ·+ (−1)n det(A).

It implies that
i det(A) is the constant term in p(λ) multiplied by (−1)n.
ii tr(A) is the negative of the coefficient of λn−1.
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Eigenvalues of a 2× 2 matrix

Consider a general 2× 2 matrix with real entries A =

[
a b
c d

]
. The

characteristic polynomial of A is

p(λ) = det(λI − A) =
∣∣∣∣λ− a −b
−c λ− d

∣∣∣∣ = λ2 − (a + d)λ+ (ad − bc).

Using the formulas tr(A) = a + d and det(A) = ad − bc to write p as

p(λ) = λ2 − tr(A)λ+ det(A).

Since p(λ) is a quadratic polynomial with real coefficients, we have

Number of eigenvalues
1 A has two distinct real eigenvalues if tr(A)2 − 4 det(A) > 0.
2 A has one real eigenvalue of multiplicity 2 if tr(A)2 − 4det(A) = 0.
3 A has two complex conjugate eigenvalues if tr(A)2 − 4det(A) < 0.
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Eigenvalues of 2× 2 symmetric matrix

If A =

[
a b
b d

]
is a symmetric matrix with real entries, then A has real

eigenvalues. Moreover, A has one repeated eigenvalue if and only if a = d and
b = 0, in which case the eigenvalue is λ = a.

Eigenspaces of 2× 2 symmetric matrix
1 If A has one repeated eigenvalue, then the eigenspace is all of R2.
2 If A has two distinct real eigenvalues, then the eigenspaces are

perpendicular lines through the origin of R2.
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