Department of Mathematics

SF1624/SF1684 Algebra and Geometry Year 2018/2019

Problems for Seminar 3

Check the canvas page of the course for information on how seminars are run and what you are expected to do before and during the seminars.

The seminar starts with a test. The problem will be about computing a determinant by cofactor expansion and/or Gauss elimination.

In the seminar, the following problems will be discussed.

Problem 1. Let Ax = b be a system of linear equations, where A is an $m \times n$ -matrix (that is, m equations in n variables), and Ax = 0 the associated homogeneous system of equations. Explain why each one of the following claims is true or false:

- If Ax = 0 has a nonzero solution then Ax = b also has a solution, irrespective of m and n.
- If Ax = b has a solution then Ax = 0 has a nonzero solution, irrespective of m and n.
- If m < n then Ax = b cannot have a unique solution.
- If m > n then Ax = b cannot have a unique solution.
- If Ax = b has a unique solutions then x = 0 is the only solution for Ax = 0.

A simple counterexample is the best explanations for why a claim is false!

Problem 2. Matrisen

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

är ett speciallfall av en typ av matriser som ofta förekommer i olika tillämpningar, exempelvis i samband med diskretisering av differentialekvationer för numerisk lösning. Använd rad- eller kolonnoperationer för att beräkna determinanten av matrisen A.

Problem 3. The four vectors

$$\vec{u}_1 = \begin{bmatrix} 1\\1\\-1\\2 \end{bmatrix}, \quad \vec{u}_2 = \begin{bmatrix} 1\\2\\2\\-1 \end{bmatrix}, \quad \vec{u}_3 = \begin{bmatrix} 2\\3\\2\\0 \end{bmatrix} \quad \text{och} \quad \vec{u}_4 = \begin{bmatrix} 3\\5\\3\\0 \end{bmatrix}$$

in \mathbb{R}^4 are linearly dependent. Write on of them as a linear combination of the others.

Problem 4. Tetrahedron is a three dimensional object with four vertices whose sides are triangles. The four points O=(0,0,0), A=(1,2,-3), B=(3,1,0) and C=(0,2,1) are the vertices of the tetrahedron. Volume of tetrahedron can be computed as one sixth of the absolute value of the tripple product, $(\vec{u}\times\vec{v})\cdot\vec{w}$, of the three vectors which go from one vertex of the tetrahedron to the three others.

- (a) Compute the cross product of the two vectors $\vec{u} = \overrightarrow{OA}$ and $\vec{v} = \overrightarrow{OB}$
- (b) Compute the volume of the tetrahedron which has vertices at points O, A, B och C.

MISCELLANEOUS

Here are some other topics that are important and interesting to discuss.

- What is the definition of linear independence? What are equivalent ways of expressing this?
- Which method is best for computing a determinant?
- Is is possible to define the cross product for vectors of length other than 3 in a reasonable way?