ttor Phenomena

wandering Demains
sely, one can think of the nontransitive map as being obtained from
tional rotation by “blowing up” some orbits to intervals whose union
akes np the complement of E. These complementary intervals are thus
ed fike the points on an orbit for an irrational rotation. All interior
those intervals are “wandering” in the sense below since they stay
hose intervals whose images are all disjoint. The next subsection has an
construction of such an example.

tion 4.4.3 A peint is said to he wandering if it has a neighborhood all of
mages and preimapes are pairwise disjoint.

behavior is the extreme opposite of reenrrence. which we mtroduce in
tion 0.1.8. ‘
return to our comparison with the case of rational rotation number we
at in that case a map f is only conjugate to a rotation if all orbits are
ic with the same period and hence f7 = Id for some q € Z. Furthermore,
nal rotation can only be a factor when there are infinitely many periodic
which, as we noted earlier, is unstable,

The Denjoy Example
give an example of a nontransitive circle diffeomorphism without
dic points. The construction starts with an irrational rotation and replaces
oints of one orbit by snitably chosen intervals. The resulting map is not
ve. This example due to Arnaud Denjoy proves:

sition 4.4.4 For p ¢ R~ Q there is nontransitive 1 diffeomorphism
= S awith p(£) = p.

Il = (ln| +3y % and ¢, :— 2 (g1 /L) — 1) = —1. then

2y o 1 |
Yh<zdh=2) ea [T Laemn

ned =0 =3
B_l_()w up” the orbhit x, = R;x of the irrational rotation R, tointervals I, of
gthl,, insert the intervals I, into S' so that they are ordered in the same way
€ poinis x, and the space between any two snch intervals 1, and I, is

=2 bfd@nm)+ > 4

ne p e, x, )

15 the snm of the lengths of the intervals Iyinserted in between and the length
¢ arc of the cirele between x,, and Xy, appropriately scaled to refleet the fact
'the, totallength of S! U, ez Lis1 — 2 e n-) To define a circle homeomor
H f such that S(L) = 1,41 and fr\l U is semiconjugate Lo a rotation it

es to specify the derivative f'(x) sincemj' is then obtained by integration.

o the interval [a, a + 1] define the tent function

1
hla, I, x):=1— EJ:Z(_x —aj 1.




138 4. Recurrence and Equidistribution on the Cir¢], ‘4.4 Cantor Phen

Then R, L a-+1/2) =1 and j:_H ha b, x)dx = 1/2. Denote the left endpoint
of I, by e, and let

y forx € 8+~ |, .7 L.

fxy = .
1+ Cy h(”‘ns lu- 3‘() fora e l”‘

The choice ¢, = 2 ((l,1/6) — 1} = 2(l,uq — 1,} /1, implies

. . [ ‘
f .fl(.x) dx = ]. (I + Cnh(“us [lh x)) d-"‘: = £r1 + ;Cu s anr]s
L. L =
soindeed f(1L)=[1. O

Close inspection of this proof reveals that the derivative of the function
has to be somewhat distorted in order to contract intervals fast enough to fit into
the interstices of the universal Cantor set. A systematic careful analysis show
that no sufficiently smoeth circle homeomorphism exhibits this phenomenon.

A C? diffeomorphism f: S' — S' with irrational rotation numl
p(f) € R~ Q is transitive and hence topologically conjugate 10 R py.

In fact, slightly weaker regularity hypotheses suffice. The most natural weak-
ening is to assume merely that the derivative has hounded variation. A functio
g: §' = R is said to be of bounded variation if its tota} variation Var(g) :=
sup ) p_q lglxr) — g(ap)| is finite. Here the sup is taken over all finite collection
{2, 2} snch that ay, x; are endpoints of an interval I, and I, N I =@ fo
k# j. Every Lipschitz function and hence every continuously differ ennaiﬂei n ei?her case Ol
function has bounded variation. : : While Proj

4 Dependence of the Rotation Number on a Parameter . stable, lhe.
Here we examine the dependence of the rotation number on the wap as Lhe may: ' pmpositid 4
is varied. To begin with, it is continuous aud monotone. ' phism with rati

Then all

Proposition 4.4.5 p(-) is continuous in the uniform topology arby pertur
: neq it

Proof If p(f) = p. take p'/q’, p/q € @} such that p'/q’ < p < p/q. Pick th
Lift F of f for which —1 < F9(x} — x — p < 0 for some x € R. Then Fi(x) < The basici
x+ p for all x ¢ R, since otherwise Fi(x)=x+ p for some x c R by 1h = the diagonal
Intermediate-Value Theorem and g = p/q. Since the funciion F¢ — Id is pe-

riodic and continuons, it attains its maximum. Thus there exists § > 0 snch that’

Fi(x) < 2+ p — dforallx € R. Thisimplies that every sufficiently small pertur:
bation F of F in the uniform topelogy also satislies F9(x) < x + plor all x € R
and thus p( F) < p/q. Asimilar argonment involving p'/q" completes the proof. O

The definition of the rotation number further sugrests that it is monotone:
I Fy > Fy, then p(Fy) > p(Fy) follows from the definition. This leads to the
following concepts of ordering on the cirele and for maps of the circle: :

Definition 4.4.6 Deline “<” on §' by [x] < [y]:¢& y—x € (0, 1/2) (mod 1}-
and deline a partial ordering “<™ on the collection of orientation-preserving
circle homeomorphisms by fi < fi <> fo(x) < fi(x) for all x € S', '

Notice that neither of these orderings is transitive. Indeed, [0] < [1/3] < :
[2/3] < [0} and correspondingly Ry < Ry < Ry3 < Ry, where R, is the © Figure 4.4.2; 01




