SF 2720 -Homework 1 - due (in class or via email) 18. 9. 2018

- 1. Exercises 2.5 in the textbook, Exercise 2.5.
- 2. Exercises 2.5 in the textbook, Exercise 2.8.
- 3. Suppose that f: X → X and g: Y → Y are topologically semi-conjugate via a continuous onto map φ: X → Y. We say g: Y → Y is a topological factor of f: X → X.
 Prove that if f: X → X is topologically transitive then g: Y → Y is topologically transitive. Does the converse implication hold? Justify your answer.
- 4. For $\alpha \in \mathbb{R}$, the map F_{α} (often called the skew-shift map) of the 2 dimensional torus \mathbb{T}^2 is:

 F_{α} : $(x, y) \mapsto (x + \alpha \mod 1, x + y \mod 1).$

Observe that $R_{\alpha} : x \mapsto x + \alpha \mod 1$, is a topological factor of F_{α} via the map $\phi : (x, y) \mapsto x$. a) Find necessary and sufficient condition on α which guarantees that F_{α} is topologically transitive. Is F_{α} minimal?

b) Is F_{α} topologically mixing?

c) Is F_{α} an isometry (i.e. does F preserve the distance on the torus which is induced by the Eucledian distance in \mathbb{R}^2)?

- 5. Exercises 3.5 in the textbook, Exercise 3.9.
- 6. An integer 2 by 2 matrix A of determinant 1 or -1 induces an invertible map on the 2torus \mathbb{T}^2 which we denote by F_A . If the det A = 1 then F_A is orientation preserving, and if det A = -1 then then F_A is orientation reversing. The map F_A is called *toral automorphism*. F_A is called *hyperbolic* toral automorphism if for every eigenvalue λ of Awe have $|\lambda| \neq 1$. Consider the following matrices with integer entries:

a)
$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 b) $A_2 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ c) $A_3 = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$ d) $A_4 = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$

a) For each of the matrices above say if the corresponding map F_{A_i} (i = 1, 2, 3, 4) is:

- a (orientation preserving or reversing) toral automorphism? Justify your answer.

-a hyperbolic toral automorphism? Justify your answer.

b) Draw geometrically (as we did in class for the CAT map) how A_1 and A_4 transform the unit square. Prove or disprove topological transitivity and mixing properties for F_{A_1} , and for F_{A_4} .

c) In the class we called a dynamical system chaotic if it has a dense set of periodic points, if it is topologically transitive and has a sensitive dependence on initial conditions. Is either of the two maps F_{A_1} and F_{A_4} a chaotic map on the 2-torus?