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A5 Extra Section: Quadratic maps:
attracting and repelling fixed points

Let us motivate the study of the quadratic maps from a simple {but very rich!) model of population growth
in biology. Let z be the size of a population. Consider a diserete model, in which the population size grows at
discrete time intervals, say, for example, every year?, If the population y during the following year is depends
only on the present population z, we can model the growth by an equation of the form y = f(z). Thus, f*(x)
gives the population after n time intervals. The simplest model is '

flz) = pz
where ¢ > 0 is a parameter which gives the fertility of the species. By induction, one sees that
Ia) = s,

and since
lim p"z =0 ifup<l, lim p"e =400 fpu>1,
n—oo

0
the population either becomes extinct (if u < 1, there are not enough children), or it grows exponentially (if
> 1),

2This is the case for certain populations, for example of butterflies, which are seasonal and the size of the population the next
summer depends only on the previous generation the summer before,

v (© University of Bristol 2010 & 2015




Dynamical Systems and Ergodic Theory Main Examples and Ideas

This model is too simple because in reality resources are limited and if the environment is overcrowded,
there is not enough food to support exponential growth. One can assume that there is an upper value L for
the size of the population which can be supported by the environment. The second simplest model often used
by biologist is:

flz) = pz(l —z).
If z is very close to L, the population grows very slowly. If z/L is small though, we still have exponential
growth untit we approach the value L. If z = L, f{z} = 0: there is not enough food and ail population die
before reproducing. If does not make sense to consider values of & bigger than L (then f(z) is negative).

For convenience, we can rescale variables and assume that L = 1. One should think of z € [0,1] as &
percentage, giving the population size as a percentage of the maximum value L. We obtain the following map,
that we call f, since it depends on the parameter .

Jul@) = pa(l ).

As pu changes, we get a family of maps known as the quadratic family. It is also called logistic family3. Values
of the parameter which are studied are 0 < g < 4. For these values,

fu((0,1)) € [6,1],

50 we can iterate the map. If 4 > 4, some of the points in [0,1] are mapped outside of the domain [0, 1], so
we cannot iterate our function (one can nevertheless restrict the domain and consider f only on the set of
points whose forward iterates all belong to {0, 1], which turns out to be a fractal, see Eixtra A.5.1). Let us here
consider here only the parameters 0 < u < 4 and let us investigate orbits of f, when 0 < p < 4. Remember
that the orbit O?(m) can be thought of describing the behavior of an initial population z under this model.
For example we would like to know if the values f*(z) after large time n stabilize, and in this case to which
values, or if it oscillates.
Congider as an example the map corresponding to g = 5/2:

f(@) = 2a(i - o).

The graph of f can be drawn noticing that it is & parabola, f(0) = f(i} = 0 and that the derivative
F(z) = 5/2 — 5z is zero at x == 1/2 for which f(1/2) = 5/8. In particular, f maps [0,1] to [0, 1].-See Figure
A2

ST E——

0 172 1

Figure A.2: The graph of the quadratic map f(z) = 3z(1 — z).

Fixed points of f are solutions of the equation f(x) == 2. In this case, solutions of 5/2z — 5/2z =  or
equivalently (3/2 — 5/2x) = 0 are only # = 0 and z = 3/5.

Remark A.5.1. Graphically, fived points are given by considering the intersections of the graph of f, that
is the set & = {(z, f{z)),x € X} with the diagonal A = {(z,z}, =z € X} and taking their horizontal
_components. Equivalently, = is a fized point if and only if (z,2) € 4.

To have an idea of the empirical behavior of an orbit Of(z) one can use the following graphical method.

31,0gistic comes from the French logistique, which is derived from the lodgement of soldiers. The equations were introduced
by the sociologist and mathematician Verhulst in 1845,
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/
/
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Figure A.3: Examples of graphical analysis.

Graphical Analyses
e Draw the graph & of f and the diagonal A = {{z,z), =z € X},
o Start from (z,0). Move vertically up until you intersect the graph ¢ of f at (z, f(x));
« Move horizontally until you hit the diagonal A, at (f(z), f(z)); the horizontal projection is now f (z);
« Move vertically to hit the graph ¢, and then again horizontally to hit the diagonal;

e Repeat the step above.

At step n > 1 one hits the graph at (f*~!(z), /™(z}) and the diagonal at (f™(z), f" (z)}. Thus the horizontal
projections of the points obtained give the orbit Oy(z). This method allows to guess what is the asymptotic
behavior of Of(z). You can for example look whether the points (f7(z), f*{z)) € A which you obtain are
converging towards {or diverging from) a fixed point (z,z) € A. In our example, the graphical analysis shows
that values of f*(z) tend to oscillate around 3/5 but tend to stabilize toward it, see the right picture in Figure
As. :

Exercise A.5.L. Use the graphical analysis to find fized points and study the behavior or orbits nearby for
the following functions: :

(1) gl)=2—2z2 for 0 <z < 1;
(2) glz) =2z —z% for 0 <z < 15
(3) glz) = —z° for —c0 <z < co;
Exercise A.5.2. Draw the behavior of the orbits of f(z) = 5/2z(1 — z} near 0 and near 3/5.

The graphical analysis of f, for 4 = 5/2 suggested that for any x € (0,1) the values of f*(x) tend to
oscillate around 3/5 but to stabilize toward it. Let us prove that this is indeed the case.

Given a ball U := B(z, €) = {y| d(z,y) < ¢}, let U := B(z, ¢} be the closed ball {y| d{z,y) < ¢}. Note that
in X = [0,1] the ball B(z,€) is simply a open interval (z — €,z + €) and the closed ball is the corresponding
closed interval [z — e,z +€|. We give here the definition using balls, since this definition holds more in general
in any metric space, that is a space where there is a notion of distance (see Chapter 2).

Definition A.5.1. We say that o fived point = is an attracting fized point if there exists a ball U = Bz, ¢)
around x such that ‘

JO U, and Nnen f*U) = {2}
. We say that a fized point x is an repelling fived point if there esists a ball U := B(x,¢} around x such that
TcCfU), and Npen f™(U)={z}.

[Note that here f is not necessarily invertible. By f~'(U) we mean the set-preimage of the set U: fHU) s
the set of all points y such that f(y) ¢ U (that is, all preimages of U). /

vi (© University of Bristol 2010 & 2015




Dynamical Systems and Ergodic Theory Main Examples and Ideas

Exercise A.5.3. Show that if f is invertible, ¥ is an attracting fived point if and only if it is a repelling fized
point for =1 and viceversa.

When X is an interval in R there is an easy criterion to determine whether a fixed point is attracting or
repelling.
Theorem A.5.1. Let X C R be an interval and let f: X = X be a differentioble function with continuous
derivative. Let © = f(z) be o fized point. '

(1) If|f'(z)| < 1, then x is an attracting fized point. More precisely, we will find and open ball U such that
F(U) C U and for all y € U we have
e pmgn
Jim_ f™(y) = .
(2) If |f'{z)] > 1, then 2 is a repelling fived point.
Remark A.5.2. Note that if |f'(z)| = 1 it is not possible to determine just from this information whether
the fized point is repelling or aftracting.

Proof. Let us prove (1). Since f' is continuous and |f’(z)] < 1, there exist an € > 0 such that for all
y € {x — e,z + €] = Bz, ¢) we have |f'(y)| < p < 1. Then for all y € B(z,¢), since f(z) = z, by Mean Value
Theorem there exists £ € B(z, €) such that

) — 2l = 1) - F@)] =17 ©lly — 2| < oly — 2] < pe.

This givens that f(y) € (z — ¢,z +¢€) for all y € B(z,€). Thus f{B(z,¢}) C B(z,¢).
Lat us prove by induction that

|f*(y) — 2] < p"e.
We already proved it for n = 1. Assume that it holds for n > 1. Then, applying mean value as before, for all
y € B(z,¢), there exists §£ € B(z,€) such that

|/ ) — @) = 1P ) — SO @] = 1 O™ ) — @) < plf* () — =
and by the induction assumption, since f**+(z) = =, this gives

|57 () — 2l = £ ) — ) < ol ) -l S oM e

Since p < 1, limyy00 o™ = 0. Thus, we get at the same time that

lim f(y) =2 and Npen f7(B(z,€)) = {z}.

n—+0a
The proof of part (2) is similar. |
Exercise A.5.4. Prove part (2) of Theorem A.5.1.

Exercise A.5.5. In our ezample f(z) = 5/2z(1 — x), one can check that f/(0) = 5/2 and f'(3/5) = ~1/2 so
that O s o repelling fized point and 3/5 is an attracting fived point. Moreover, for each § > 0, f([6,1]) C (0,1)
and all points points converge to 3/5.

The dynamics of this quadratic map is then very simple, it is an attracting-repelling dynamics. If one
changes 5/2 with 4 and considers the map f(z) = 4z(1 — ), the behavior is completely different and much
more chaotic.

Exercise A.5.6. Program o computer program to plot some iterates of f(x) = 4x(1 — ) at some points. Is
there any pattern? Compare with the case f(z) = pa(l —z) with 0 < p < 3.

For 0 < p < 3, the behavior of the maps
fu(®) = pz(1l —=2).
the quadratic family is also very simple and similar to the one for p = 5/2. There are only attracting and

repelling fixed points and all the other points are attracted or repelled.
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Exercise A.5.7. Consider the quadratic family f, for p € [0,4].
(1) Check that for ju € [0,4] the interval I = [0,1] is mapped to itself, i.e. fu(I) C 1.
(2) Check that the fized points of f are 0 and 1 —1/p.

(8) Determine for which values of p each of them is a repelling or atiracting fived point according to the
criterion in Theorem A.5.1.

What happens for 3 < pz < 47 When p is slightly bigger than 3, one finds that instead than an aftracting
fixed point, there is an attracting orbit: the values oscillate and tend to converge to a periodic cycle. The
periods of the periodic orbit happen to double as one moves the parameter, showing a phenomenon known
as period doubling (see the Extra A.5.2 if you want to experiment it). The dynamics as p approaches 4 is
very rich and displays interesting new chaotic phenomena sometimes called the route lo chaos. Finally, the
dynamics of f,, for g = 4 is very chaotic and turns out to be very similar to the dynamics of the doubling map
that we will see in the next lecture?, see §1.4.

A.5.1 Quadratic maps for y > 4, Cantor fractals and invariant sets

For p > 4 the interval I is no longer invariant under fy, i.e. there are points which are mapped outside [. It
is still possible to consider the dynamics of f,, but one has to restrict the domain to an invariant subset of
[0,1], i.e. to the set C of the form ,
C = Nuenf, ™) {A.2)
Ifz € CCI,foreachn €N, f2(z) € I, so that Op,(x) C I. This set is called the invariant set of the map
fu and it turns out to be non-empty. The map fu on the space X = C gives a well defined dynamical system,
since f(C) C C and for any z € C we can iterate f forever. The set ', though, has a quite complicated fractal
structure: it is a Cantor set.

The best known Cantor set is the middle third Cantor set, that can be defined by the following iterative
construction. Start at level zero from C° = [0,1]. Divide the interval into 3 equal thirds and remove the
open middle interval, that is (1/2,2/3). The remaining set, that we call G, consists of the 2 closed intervals
[0,1/3] and [2/3, 1], each of length 1/3. To go to the next stage, divide each of these two intervals into 3 equal
intervals and remove the two middle thirds. You are left with is the set

1 21 27 8
cl=10,2lul|z,Z2|Uls,=ju]|-,1
bilopale sl o [5]
which consists of 4 intervals of size 1/9. Iterating this construction, at step n we get a set C™ which consists
of 2" intervals of size 1/3" (see Figure A.4). The intersection C3 = M, C™ of all these sets is not empty and

0

0 1 C
0 113 213 1 ct
0 19 49 1/3 213 519 89 1 c?

U c?

Figure A.4: The construction of the middle-third Cantor set.

is the middle-third Cantor set. The Cantor set Cy is self-similar in the following sense: if you consider for
example C3 1[0, 1/3], and blow it up by applying the map = — 3z, you get back the same Cantor set. This
self-similarity happens at all scales and is responsible for the fractal nature of Cf.
Let f = fu. be a quadratic map with p > 4 and let us describe its invariant set iteratively. One can see
" that the points z such that f(z) € I belong to the two disjoint subintervals, say /1 and Io such that

fﬁl([o, 1]) =1L Uls.

17t i5 possible to show that these two maps are conjugeted in the sense defined in §1.4 and hence they have similar dynamical
properties, for example the same number of periodic points.
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The points for which f(z) € I and f*(z) € I belong to
FTHOUSTHE)

which consists of 4 disjoint intervals, two obtained by removing a central subinterval from [y and the other two
obtained by removing a central interval from Iy, Continuing like this, one can see that the points which can
be iterated n times belong to a disjoint union of 2™ intervals. The set of points which can be iterated infinitely
many times can be obtained by iterating this construction. What is left by intersecting all the disjoint unions
of 2™ intervals is also a Centor set and has a fractal structure.

A.5.2 Quadratic maps for 3 <y < 4, experimenting period doubling

The dynamics of the quadratic family for p € [3,4) is very rich and displays interesting chaotic phenomena,
known as period doubling or sometimes called the route to chaos. We will not treat them in this course, but
if you can write a simple computer program, try the following exercises to get a sense of it:

Exercise A.5.8. Starting with z = 0.001, sterate f, for p =29 and p = 3 until you discern a clear pottern.

The population in both cases settles down, but for g = 3 there are fairly substantial oscillations of too
large and too small population which die out slowly.

Exercise A.5.9. Starting with x = 0.66, iterate f,, for p = 3.1 until you discern a clear pattern.

Here oscillations do not die out. It is possible to prove that they are stable, whatever the starting data,
the population keeps running into overpopulation every other year.

Exercise A.5.10. Starting with x = 0.66, iterate f, for p = 3.45 and p = 3.5 until you discern a clear
pattern.

Now oscillations involve four population sizes: big, small, big, small in a 4-cycle.

Exercise A.5.11. Try to explore the behavior of f,, increasing slowly the parameter p for values slightly larger
than pt = 3.5. Try to see if you can find oscillations of the population size of size 8, 16 and other multiples of
2,

This phenomenon is known as period doubling.
Exercise A.5.12. Starting with x = 0.5, iterate f, for p = 3.83 until you discern o clear pattern.

You will find that here there are oscillations, but not more of a period multiple of 2, but of period 3... then
the periods of the oscillations will become 2 - 3, 22.3,2%.3......, that is there will be a new period doubling
cascade. The behavior of this family has been object of fascinating research and what is sometimes called
route to chaos is know well understood.

If you want to explore more about the behavior of the quadratic family for 3 < p < 4 we suggest the
following references:

{4 | R. Devaney Chaoticol Dyanamical Systems, Springer

[5 ] K. Alligood, T. Sauer, j. Jorke, Chaos: an Introduction to Dyanamical Systems, Springer
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