tndiout-2 | . grafatos

L s 0
s
©
":‘;&
.
c

Chapter 3 :
Fourier Analysis on the Torus

Principles of Fourier series go back to ancient times, The attempts of the Pythagorean
school to explain musical harmony in terms of whole numbers embrace early ele-
ments of a trigonometric nature. The theory of epicycles in the Almagest of Ptolemy,
5 based on work related to the circles of Appolonius, contains ideas of astronomical

b periodicities that we would interpret today as harmonic analysis. Early studies of
L'.‘ acoustical and optical phenomena, as well as periodic astronomical and geophysical
i occurrences, provided a stimulus of the physical sciences to the rigorous study of
P expansions of periodic functions. This study is carefully pursued in this chapter.

:“':, : The modern theory of Fourier series begins with attempts to solve boundary value
\‘,'-.».‘-,;_- problems using trigonometric functions. The work of d’ Alembert, Bernoulli, Euler,

and Clairaut on the vibrating string led to the belief that it might be possible to rep-

L% resent arbitrary periodic functions as sums of sines and cosines. Fourier announced
belief in this possibility in his solution of the problem of heat distribution in spatial
bodies (in particular, for the cube T?) by expanding an arbitrary function of three
variables as a triple sine series. Fourier’s approach, although heuristic, was appeal-

- ing and eventually attracted attention. It was carefully studied and further developed

- by many scientists, but most notably by Laplace and Dirichlet, who were the first
lo investigate the validity of the representation of a function in terms of its Fourier
series. This is the main topic of study in this chapter.
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162 . 3 Fourier Analysis on the Torus 31 F

3.1.1 The n-Torus T" R
i and #
The n-torus T" is the cube [0, 1]" with opposite sides identified. This means that on th
the points (xi,...,0,. vy Xy) and (X15eeeq1yonny2y) are identified whenever 0 and 1 [0,1]
appear in the same coordinate. A more precise definition can be given as follows: deno
For x,y in R, we say that of fu
X=Y @1
if x—y € Z" Here Z" is the additive subgroup of all points in R” with integer
coordinates. If (3.1.1) holds, then we write x =y (mod 1). Tt is a simple fact that = ‘
is an equivalence refation that partitions R” into equivalence classes. The n-torus ™ fora
is then defincd as the set R?/Z” of all such equivalence classes. When # = 1, this LPs
set can be geometrically viewed as a circle by bending the line segment [0, 1] so that E
its endpoints are brought together. When # = 2, the identification brings together size
the left and right sides of the unit square [0, 12 and then the top and bottom sides as and |
well. The resulting figure is a two-dimensional manifold embedded in R? that looks
like a donut. See Figure 3.1.
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Fig. 3.1 The graph of the
two-dimensional torus T2,
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The n-torus is an additive group, and zero is the identity element of the group . and
which of course coincides with every ¢; = (0,...,0, 1,0,...,0). To avoid mutti :

The

appearances of the identity element in the group, we often think of the r-torus as t
set [—1/2,1/2]". Since the group T" is additive, the inverse of an element x € T
is denoted by —x. For example, —(1/3,1/4) = (2/3,3/4) on T2, or, equivalently,
—(1/3,1/4) = (2/3,3/4) (mod ). :
The n-torus 'T" can also be thought of as the following subset of C”*,

{(ezm'll" . ,EZTEI'IH) = C" : (JC],. . _’xn) [ [O, ]]"}, ‘ (31

in a way analogous to which the unit interval [0, 1} can be thought of as the U
circle in C once 1 and 0 are identified.
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Functions on 17 are fanctions f on R that satisfy flx+m) =1 (x)forallx € RrR"
and m € Z". Such functions are called 1-periodic in every coordinate. Haar measure
on the n-torus is the restriction of n-dimensional Lebesguc measure to the sct T" =
[0,1]". This measure is still denoted by dx, while the measure of 2 set ACT is
denoted by |A}. Translation invariance of the Lebesgue measure and the periodicity
of functions on T" imply that for all fon T", we have

dx = dx = )l 3.1.3
_[I"f(X) x 4/;~1/2‘1/2"f(X) * j['m,1+a;]x-ux[a,,,1+an1f(1‘) * ( )

for any real numbers ay,. - &n- The IF spaces on " are nested and Ll contains all
LP spaces for p = 1.

Flements of Z" are denoted by m= (M, ,mn) Forme L', we define the fotal
size of m to be the number tm| = (mf 4 m2)1/2. Recall that for x = {X1,-++ )
and y = (yl,...,y,,) inR",

x'y:xiyf+"'+erYn

denotes the usual dot product. Finally, for x € T, |x| denotes the usual Buclidean
porm of x. If we identify T* with {—1 /2,1/2)", then |x| can be interpreted as the
distance of the element x from the origin, and then we have that 0 < x| < Vnf2 for
allxe T

- 3.1.2 Fourier Coefficients
Pefinition 3.1.1. For a complex-valued function f in L (T") and m in Z", we define

Flm) = . F(x)e T dx. - (3.1.4)

We call F{(m) the mth Fourier coefficient of f. We note that F(my is not defined for
£ ¢ RP\Z", since the function x v o285 % is not i-periodic in every coordinate
and therefore not well defined on T,

The Fourier series of f at X < T is the series

Y, Flmyem ™. (3.1.5)

meZ

is not clear at present in which sense and for whichx e T" (3.1.5) converges. The

tudy of convergence of Fourier series is the main topic of study in this chapter.

We quickly recall the notation we intrgduced in Chapter 2. We denote by f the

complex conjugate of the function f, by f the function f(x) =f (—x), and by (f)

the function ¥ () (x) = flx—y) for ally € T". We mention some elementary prop-
rties of Fourier coefficients.
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where {1

(T"). Then for all mkecZ' A cCyE T, and
number

Proposition 3.1.2, Let f, gbein L
all multi-indices 0. we have

(1) Fta(m)=Fim)+&m), Exampl

(2) Af(m)=AF(m),
for som

(3) F(m) = F(-m), » b
: m+#q.

@ Fm)=Fl-m). .
et

(5) m(ral)zf(m}e‘m”"-", L")
- _ that the

(6) (7K f)(m) = Flm—k), can be
) FO = [ fdx,

(8) r::%]f(m)‘ < |Ifll (7’ ._ These

(9) Frg(m) = F(m)gm),

(10) 3/“} (m) = (Zﬂi:rt)“f(m), whenever f € €%
Proof. The proof of Proposition 3.1.2 is obvious and is left to the reader. We only : Defini

sketch the proof of (9). We have

Frgtm) = [ [ f=g)e e e dyds = Fo)Eom),
" Tﬂ

where the interchange of integrals is justified by the absolute convergence of the The ¢

integrals and Fubini’s theorem.

Remark 3.1.3. The Fourier coefficients have the following property. For a function

fi on TH and a function f; on T2, the tensor function
In

(fi @ f2) (,02) = fi (x1)Fal2) . ok
5 erne
is a periodic function on T+ whose Fourier coefficients are L Lo B
R - 1ic pt
dime

j@(m] i) = fl (ml)fg(mz) ,

for all my € Z"M and mz € 7,
Weh

Definition 3.1.4. A frigonometric polyromial on T" is a function of the form

P(x): 2 ameizmnrx’

mcEh
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where {¢y }mezr 18 2 finitely supported sequence in 7 _The degree of P is the largest
number |g1|+ -+ +|gn| such that ag is nonzero, where g = (g1, -+ dn)-

Example 3.1.5. A trigonometric monomial is a function of the form

P(x) — ae?.?:i(qlxl+--~+q,,xn)

for some g = (q1,..-,gn) € L* and a € C. Observe that P(g) = a and P{m) =0 for
m+# g.

Let P(x) = ZlmigNamez’”'""x be a trigonometric polynomial and let f be in
L1(T"). Exercise 3.1.1 gives that (f*P)(x) = Lpml<w am f ()%, This implies

that the partial sums Yy (m)e?™™* of the Fourier series of f given in (3.1.5)
can be obtained by convolving f with the functions

Dy(x)= Y, €5 (3.1.8)
jm| <N

These expressions are named after Dirichlet, as the following definition indicates.




