APPENDIX

A.1 METRIC SPACES

Some interesting dynamical systems do not naturally “live” in Euclidean space, and
there are occasions where the study of a dynamical system benefits from consid-
erations in an auxiliary space. Therefore we use metric spaces in some generality.

A1l Definitions

Definition A.1.1 If X is a set, thend: X x X - R is said to be a metric or distance
Junction if

(1)} dix, y) = d(y, x) (symmetry),
2) dix, D=0 x= ¥ (positivity),
3) dlx, ¥+ dly, 2) > d(x, 2) (triangle inequality).

If d is a metric, then (X, d) is said to be a metric space.

Remark A.1.2 Putting z = xin (3) and using (1) and (2) shows that d{x, ) = 0,

Remark A.1.3 A subsetofa metric space is itself a metric space by using the metric
of the space (this is then called the induced metric),

The following notions generalize familiar concepts from Euclidean space.

Definition A.1.4 The set Blx,r):={ye X | dx,y) < r} is called the (open) r-ball
around x. A set A ¢ X is said to be bounded if it is contained in a bail.

itis the set of x € S such that B(x, r)
$el containing x, then O is said to be
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boundary point of S ¢ X if for every neighborhood U of x we bave UnN S # @ and
U\ S # @. The boundary of S is the set 3 A of its boundary points.

For A ¢ XihesetA:={xe X | Blx,r) N A £ @ forall r > 0}is called the closure
of A. A is said to be closed if A= A. A set A C X is said to be dense if A= X and
e-denseif X < | J{B(x, €) | x € A}. Asetis said to be nowhere dense if its closure has
emply intérior (that is, contains no nonempty open set). This is true for finite sets
but fails for Q) and intervals. A sequence (%) nen in X is said to convergeto x ¢ X if
for all € > 0 there exists an NV € N such that for every n > N we have d{x,, x) < €.

It is easy to see that a set is closed if and only if its complement is open.
(Therefore, any intersection of closed sets is closed.) Another way to define a closed
set is via accumulation points:

Definition A.1.5 An accumulation point of a set A is a point x for which every ball
B(x, €) intersects A ~ {x}. The set of accumulation points of A is called the derived
set of A and denoted by A'. A set is closed if A’ C A and the closure A of a set A is
A= AU A’ Aset Aissaid to be perfectif A’ = A, that is, there are no points missing
(all accumulation points are there) nor any extraneous (isolated) ones.

Note that x ¢ A’ if and only if there is a sequence of points in A that does not
include x but converges to x. '

Example A.1.6 Perfect sets are closed. R is perfect, as are [0, 1], closed balls in R,
St and the middle-third Cantor set (see Section A.1.7). But Z or finite subsets of R?

are not (they have no accumulation points) and nor are the rationals Q (they hav
irrational accumulation points). e

On the real line finite sets are nowhere dense, but this fails for ¢ and interval
The ternary Cantor set is nowhere dense, because it is closed and has em
interior (contains no interval).

Here is an interesting, pertinent special case of Theorem A.1.38:

Proposition A.1.7 All sets in R that are bounded, perfect, and nowhere de
homeomorphic to the ternary Canior set.

- Definition A.1.8 A metric space X is said to be connected if it contains no|
disjoint nonempty open sets. A fotally disconnected space is a space X where
every two points x;, x; € X there exist disjoint open sets 0;, 0, C X contal
X1, X2, respectively, whose union is X.

IR or any interval of R, as well as R” and open balls in R?, or the circle in R* 2
conmected. Examples of totally disconnected spaces are provided by finite subset
of B with at least two elements as well as the rationals and, in fact, any Cp.uﬁ bl
- subset of R. The ternary Cantor set is an uncountable totally disconnected s
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£.1.2 Completeness
One important property sets apart the real yumber system from that of rational

numbers. This property is cailed completeness, and it reflects the fact that the
real line “has no holes,” like the rationals do. There are several equivalent ways of
expressing this property precisely, and different versions may be useful in different
circumstances.

{1} If a nondecreasing sequence of real numbers is bounded above, then it is

convergent. _
(2) Ifasubset of R has an upper bound, then it has a smallest upper bound.

(3) A Cauchy sequence of real numbers converges.

A Cauchy sequence is a sequence (@) nen Such that for any € > 0 there exists an
n e N such that |@, — | < ¢ foranyn, m= N.

* The first two versions of completeness refer to the ordering of the real numbers
(by using the notions of upper bound and nondecreasing). The last one does not,
and itis used to define completeness of metric spaces.

Definition A.1.9 A sequence (X;);en is said to be a Cauchy sequence if for all € > 0
there exists an N e N such that d(x;, x;) < e whenever i, j = N. A metric space X is
said to be cornplete if every Cauchy sequence CoOnverges.

Example A1.10 For example, Ris complete, whereas an open interval is not, when
one uses the usual metricd(x, y) = |x — y| (theendpointsare “missing”). If, however,
we define a metric on the open interval (—7/2, 7/2) by d.(x,y) = |tanx — tan y|,
then this unusual metric space is indeed complete. The endpoints are no longer
perceived as “missing” because sequences that look like they converge to an
endpoint are nat Cauchy sequences with respect to this metric since it stretches
distances near the endpoints.

Remark A.1.11 This is an example of the pullback of a metric. If (¥, d) is a metric
space and h: X — Y is an injective map, then d.(x, y) = d(hx), Ky defines a
metric on X, Here we took X = (—/2,n/2), Y =R, and k= tan.

Lemma A1.12 A closed subset Y of a complete metric space X is itself a complete
metric space. :
Proof A Cauchy sequenceinYisa Cauchy sequence in X and hence converges to

some x € X. Then x € Y because Y is closed. [0

An important ekample is the space of continuous functions (Definition A.1.16).

Theorem A1.13 The space )
e(o, 1}, R = {f: [0, 1] - R" | f is continuous} t

is a complete metric space with the metric induced by the norm | fli:=
maxeep, || f0)|| (see Section A.1.5). '
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Proof Suppose (fudnen is a Cauchy sequence in C{{0, 1], R™. Then it is easy
to see that (fp(X))nen is ‘a Caunchy sequence in R* for all x e [0, 1]. Therefore,
Fix) =m0 fulx) is well defined by completeness of R”. To prove fu— funi-
formlyfixanye > Oandfind N € Nsuchthat|| fi — fill < ¢/2whenever k > N.Now
fix k > N. For any x € [0, 1] there is an Ny such that 1> Ny = { fitx) — floil < €/2.
Taking [= N gives [ felx)— Feol <k filx) — il 4§ filx) - f)]} <e. This
proves the Llaim because kwas chosen independently of x. [J

Likewise one proves completeness of the space of bounded sequences.

Theorem A.1.14 The space = of bounded sequeﬁces (X nen, With the sup-norm
) o lloo === SUP ey, 1l is complete.

Proof The proof is the same, except that the domain is N rather than [0, 1L
{Boundednessis assumed to make the norm well defined; for continuous functions
on [0, 1] it is automatic.) [

Lemma A.1.15 (Baire Category Theorem). In a complete metric space any intersec-
tion of countably many open dense sets is dense.

Proof 1f {Oi}ien are open and dense in X and @ # By ¢ X is open, then induc-
tively choose a ball Bjy of radius at most 6/i such that Biy1 € O N By The
centers form a Cauchy sequence and hence converge by completeness. Thus
@CfémichBﬂmﬂiOf.D )

A.1.3 Continuity
Definition A.1.16 Let (X, d), (Y, d)be metricspaces. Amap f: X — Yissaidtobean .
isometryit d{(f(x), f(y) = dlx, y)foralix, y < X.Ttis said to be continuousatx € X
ifforeverye > Othereexistsad > 0suchthat f{B(x, 8)) C B{f(x),€)or, equivalently,
if dix, y) < & implies @ (f(x), f(y) <e. fis said to be continuousiif fis continuou
at x forevery x € X.Anequivalent characterization is that the preimage of eachop
set is open. f is said to be uniformly continuous if the choice of § does not depend -
on x, thatis, foralie > O thereisad > 0 such that for all x, y € X withd(x, ¥} < 3 :
have d'(f(x), f(3)) < e. fissaid to be anopen map ifit maps open sets to opense

A continuous bijection {one-to-one and onto map) with continuous inverse i
said to be a homeomorphism. Amap f: X — Yis said to be Lipschifz-contintoys.
{or Lipschitz) with Lipschitz constant C, or C-Lipschitz, if & (f(x), fN =€ d(x, 1)
A map is said to be a contraction (or, more specifically, a y-contraction) if iti
Lipschitz-continuous with Lipschitz constant & < 1.

Continuity does not imply that the image of an open set is open. For exaI_Il'pl'
the map x* sends (—1, 1) or R to sets that are not open. L TR

There are various ways in which two metrics can be similar, or equivalent. Th
easiest way to describe these is to view the process of changing metrics as taki g
the identity map on X as a map between two different metric spaces.
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Definition A.L.17 We say that two metrics are isometric if the identity establishes
an isometry between them. Two meirics are said to be uniformly equivalent
(sametimes just equivalent) if the identity and its inverse are Lipschitz maps
between the two metric spaces. Finally, two metrics are said to be homeomorphic
(sometimes also equivalent) if the identity is a homeomorphism between them.

A.1.4 Compactness ,
An important class of metric spaces is that of compact ones:

Definition A.1.18 A meiric space (X, ) is said to be compact if any open cover of X
has a finite subcover; that is, if, whenever 10; | i € INisd collection of opensetsof X
indexed by I such that X c | J,.; Oy, there is a finite subcollection {O4, Oho. .., O}
suchthat X c | L, O;.

Proposition A.1.19 Compact sets are closed and bounded.

Proof Suppose X is a metric space and € c X is compact. If x ¢ C, then the sets
Op:={y € X [ d(x, y) > 1/n} form an open cover of X ~. {x} and hence of C. There
is a finite subcover O of {0} sew. Let # 1= max{ne N | Oy e O} Thend(x, y) > 1/ng
forally e C, so x ¢ C. This proves € ¢ C.

Cis bounded bhecause the open cover {B(x, r) | r > 0} has a finite subcover. [

The Heine-Borel Theorem tells us thatin Euclidean space asetis compactifand
only if it is closed and bounded. In some important metric spaces, closed bounded
sets may fail to be compact, however, and this definition of compactness describes
the property that is useful in a general metric space. Indeed, this definition uses
the metric only to the extent that it involves open sefs,

If a metric is given, compactness is equivalent to being both complete and
totally bounded:

Definition A.1.20 A meiric space is said to be totally bounded if for any r > 0 there
is a finite set C such that the r-balls with center in C cover the space,

Proposition A.1.21 Compact sets are totally bounded.,

Proof If C is compact and r > 0, then {B(x, r) | x € C} has a finite subcover. O

Proposition A1.22 If (X, d) and (Y, d) are metric Spaces, X is compact, and
[ X = Y is a continuous map, then f is uniformly continuous and f(X) C Y is
compact; hence it is closed and bounded. If Y = R, this shows that f attains its .
minimum and maximum., '

Among the most used facts about compact spaces is this last observation that
a continuous real-valued function on a compact set attains its minimum and
maximum.

Proof For every ¢ > 0 there is @ § =3(x,¢) > 0 such that d(f(x), f()} < /2
whenever d(x, y} < §. The balls B(x, 8(x, €)/2) cover X, so by compactness of X
there is a finite subcover by balls B{(x;, 8(x;, €)/2). Let 8y = (1 /2y min{$ (g, €)}.
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I x, y e Xwith d(x, ) < &, then d(x, x;) < 8y < 8(x, €) for some x; and, by the
triangle inequality, d(v, ;) < d(x, x;) + d(x, ¥) < 8¢ + 8y < 8{x;, ¢). These two facts
imply d'(f(x), f() < d(fG), fF)+dUfO), flx) <e/2+¢/2=c¢.

To see that f(X) c Y is compact, consider any open cover f(X) | J;.; O; of
fEX). Then the sets f~1(0;) = {x | f(x) € O;} cover X, and hence there is a finite
subcover X ¢ LJiL, f~1O;). But then f(X} c UL, 0;. O

Proposition A.1.23 Suppose {C; | i€ I} is a collection of compact sets in a metric
space X such that (YL, Ci # @ for any finite subcollection {C; | 1 <1 < n}. Then
mt‘e[ Ci :lé 2

Proof We prove the contrapositive: Suppose [C; | { € I} is a collection of compact
sets with {);.; C; = @. Let O; = C;~ C; for i € I. Then [),.; Ci = @ implies that
| Jiey O = Cy, that is, the O; form an open cover of the compact set C;. Thus there
is a finite subcover | Ji! ; O, = C;. This means that (), C; = @. O

Proposition A.1.24

(1) A closed subset of a compact set is compact.

{2) Theintersection of compact sets is compact.

(3} A continuouys bijection between compact spaces is a homeomorphisin.
{(4) Asequencein a compact set has a convergent subsequence.

Proof () Suppose C € X is a closed subset of a compact space and | J;; O; is an -
opencover of C. I O = X~ C, then X = OU C ¢ O U|J;.; O; is an open cover of -
X and hence has a finite subcover O UL, 0. Since O N C = @, we get a finite
subcover | i, O, of C. _

(2} The intersection of compact sets is an intersection of closed subsets and
hence a closed subset of any of these compact sets. Therefore it is compact by (I

(3) We need to show that the immage of an open set is open. Using bijectivity, note
that the complement of the image of an open set (0 is the image of the compiement
0° of 0. O° is a closed subset of a compact space, hence it is compact, and thus
its image is compact, and hence closed. Its complement, the image of 0, is then
open, as required.

{4) Given a sequence (d}uen, l6t Ap:={a; | i > n} for n e N. Then the clos]
A, satisfy the hypotheses of Proposition A.1.23 and there exists an ag € (e
This means that for every k € N there exists an s > m_y such that a,, € Blag, 1/
thatis, a,, — a. J ' :

An interesting example of a metric space is given by the Hausdorff metric:

Definition A.1.25 If (X, d) is a compact metric space and K{X} denot
collection of closed subsets of X, then the Hausdorff metric dy on K(X
defined by

dy (A, B) :=sup d(a, B) + sup d(b, A).
acA beB

where d(x, V) = infyey d(x, y) for ¥ ¢ X.
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Notice that dy is symmetric by construction and is zero if and onlyif the two sets
coincide (here we use that these sets are closed, and hence compact, so the “sup”
are actually “max”}). Checking the triangle inequality requires a litde extra work. To
show that dy(A, B) < dy(A, C) + dy(C, B), note that d(a, b) < d(a, o) +d(c, b) for
ae A be B, ceC, sotaking the infimum over b we get d(a, B) < d(a, c) + d(c, B)
for a € A, ¢ € C. Therefore, d(a, B) < d(a, C) + sup, . d(c, B) and sup,. . dla, B) <
SUPye 4 d(@, C) -+ sup, .. dlc, B). Likewise, one getssup,, p d(b, A} < sup,,., d(b, C) +
Sup, d(c, A}. Adding the last two inequalities gives the triangle inequality.

Lemma A.1.26 The Hausdorff metric on the closed subsets of a compact metric
space defines a compact topology.

Proof We need to verify total boundedness and completeness. Pick a finite e/2-net
N. Any closed set A c X is covered by a union of e-balls centered at points of N, and
the closure of the union of these has Hausdorff distance at most ¢ from A. Since
there are only {initely many such sets, we have shown that this metric is totally
bounded. To show that it is complete, consider a Cauchy sequence (with respect to
the Hausdorff metric) of closed sets A, ¢ X. Ifwe let A = ket Ui Am then one
can easily check that d(A,, A} - 0. 3 B

Any homeomorphism of a compact metric space X induces a natural homeo-
morphism of the collection of closed subsets of X with the Hausdorff metric, so we
have the following:

Lemma A.1.27 The set of closed invariant sets of a homeomorphism f of a comipact
metric space is a closed set with respect to the Hausdorff metric.

Proof This is just the set of fixed points of the induced homeomorphism; hence it
is closed. [

Definition A.1.28 A metric space (X, d) is said to be locally compuct if for every x
and every neighborhood O of x thereisa Compactset K in O that contains x. Itis said
to be separable if it contains a countable dense subset (such as the rationals in R).

A.1.5 Norms Define Metrics in R"
There is a particular class of metrics in the Euclidean space R” that are invariant
under translations.

Definition A.1.29 A function N on a linear space is said to be a norm if

(1) NOx) = |A|N(x}forr e R (homogeneity),
(2} N(x)>0and N(x) =0 & x=0 {positivity),
(3) N(x+ y) < Nx) + N( V) (convexity).

Alinear space with a norm is said to be a normed linear space,
Any norm determines a metric by setting the distance function dix, y) =
N(x — ). For the metric thus defined, positivity follows from the positivity of the
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norrh, symmeiry follows from homogeneity for A = —1, and triangle inequality
follows from convexity. For such a metric the translations T,: x — x -+ v are isome-
tries by definition. Furthermore, the central symmetry x — —x is an isometry, axd
any homothety x — Ax multiplies all distances by || (we call the last property
homogeneity of the metric).

Example A.1.30 The maximum distance on R” is given by

(A.1.1) dix, y} = P('l%uf — yil-

Of course, ‘the standard Buclidean metric is of that kind (it is also invariant
under rotations, which we do not require), as is the maximum metric (A.1.1).

Example A.1.31 The linear space C([0,1}) of contihuous functions on [0,1]is a
linear space and carries the norm || fi := max{} f(x)| | x € [0, 1]}.

The following proposition is the main reason why norms are useful devices in
dynamics.

Proposition A.1.32 All metrics in R" determined by norms are uniformly
equivalent,

Proof First, since the property of uniform equivalence is transitive, it is sufficient
to show that any metric determined by a norm is uniformly equivalent to the

standard Euclidean metric, .
Second, since translations are isometries, it is suffient to consider distances :
from the origin, that is, we can work with the norms directly.
Third, by homogeneity it is sufficient to consider norms of vectors whose
~ Buclidean norm is equal to one, that is, the points on the unit sphere. :
But then the other norm is a convex, and hence continuous, function with
respect to Euclidean distance, so by compactness of the sphere it is bounded from
above. It also achieves its minimum on the unit sphere. The minimum cannot be
zero because this would imply the existence of a nonzero vector with zero norm
Thus the ratio of the norms is bounded between two positive constants. [

A.1.6 Product Spaces

The construction of the torus as a product of circles illustrates the usefulness of
considering products of metiic spaces in general. To define the product of two
metric spaces (X, dx) and (Y, dy) we need to define a metric on the cartesia
product X x Y, such as

(0, Y1), (2, ¥2)) ===/ ({1, Xa))2 + (dy (1, ¥2))2

That this defines a metricis checked in the same way as checking that the Eu CIIdE
norm on R? defines a metxic.
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There are other choices of equivalent metrics on the product. Two evident
ones are

ey (1, 1), Gz, 3200 1= dy (31, 20) + ay (1, ¥2)

d;’(xy({xlu yi)r (le y?.)) = maX(dX(xh xz)- dy{yli yz))

Showing that these metrics are pairwise uniformly equivalent is done in the
same way as showing that the Euclidean norm, the norm lCx, 31 = | x| + |y|, and
the maximum norm [|(x, Mlso :=max(lx], |y|} define pairwise equivalent metrics
(Proposi(ion A.1.32). Indeed, this follows from it.

For products of finitely many spaces (X;. dx,) (i=1,...,n) one can define
several uniformly equivalent metrics on the product as follows: Fixa norm || - || on
R”, and for any two points (X1, X2, ..., x), and (x, x5, ..., x) define their distance
to be the norm of the vector in R" whose entries are dy, (x;, x/}. That the resulting
metrics are uniformly equivalent follows from the uniform equivalence of any two
norms on R* (Proposition A.1.32).

We also encounter products of infinitely many metic spaces (or, usually, a
product of infinitely many copies of the same metric space). In an infinite cartesian
product of a set X every element is specified by its components; that is, if the
copies of the set X are indexed by a label { that ranges over an index set 7, then an
individual element of the product set is specified by assigning to each value of { an
element of X, the ith coordinate. This leads to the formal definition of the infinite
product [T, , X =: X7 as the set of all functions from 7 to X. '

Unlike in the case of finite products, we have to choose our product metric care-
fully. Not only do we have to keep in mind questions of convergence, but different
choices may give metrics that are not equivalent, even up to homeomorphism. To
define a product metric assume that I is countable. In case I = N and if the metric
on X is bounded, that is, d(x, y} < 1, say, for all x, y € X, we can define several
homeomorphic metrics by seiting

o

(A.1.2) ‘ Aix =) dlg, yi)
i=1

Ali

This converges for any A > 1 by comparison with the corresponding geometric
series.

If I = Z, we make the same definition with summation over Z [this is the reason
for writing |i] in (A.1.2)].

Theorem A.1.33 {Tychonoff). The product of compact spaces is compact.

As a parﬁcular Case we can perform this construction with X = [0, 1], the
unit interval. The product thus obtained is called the Hilbert cube. This is a new
~way to think of the collection of all sequences whose entries are in the unit
interval.
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A7 Sequence Spaces
Generalizing from the ternary Cantor set introduced in Section 2.7.1 we now deﬁne
amore gener al class of metric spaces of which there are many important examples.

Definition A.1.34 A Cantor setis ametric space homeomorphic to the middle-third
Cantor set.

Anatural and important example s the space X of sequences o = (@)%, whose
entries are either 0 or 1. This set is the product {0, 1}™ of countably many copies of
the set [0, 1} of two elements, so it is natural to endow it with a product metric. Up
to multiplication by a constant there is only one metric on {0, 1}, which we define by
setting d(0, 1) = 1. Referring to {A.1.2), we can endow £ with the product metric

dlw, 0" = Z M

i+t
L=l 3

Proposition A.1.35 The space QR {0, 1} equipped with the product metric
dlw, ') = Y2, dlew;, )37 s a Cantor set.

To prove this we need a homeomorphmm between the ternary Cantor set C
and QF:

Lemma A.1.36 The one-to-one correspondence between the ternary Cantor set C
and Q¥ defined by mapping each point x = O.cnepas -+ = 3 ooy (/30 € Claa # 1)
to the sequence f(x) = {«;/2)2, is a homeomorphism.

Proof If x = Q.genay - = Y oog (/371 (0 £ 1) and y = 0.of1f2--- = > (ﬂi/

341 (8; # 1) in C, then _
oo o B
dlx, ) =lx—-yl = Z gitl Z 3071

i=0 i=0

2, a; — By «
- [l = 3 e = g s
Now let & = f(x), 8 = f(3). Then d( (e}, f~H{B) = d{x, y) < 2d(e, f), s0 fﬂ
Lipschitz-continuous with Lipschitz constant 2, _
Ifw, o < Qf are two sequences with d(w, ') > 37", then w; 5 w; for some =
because otherwise
o]
dlw,o) < Y 377 =
. i=n+l
Consequently, f~!{w) and f~(w") differ in the ith digit for some i < . This implie
d(f ), (") = 37"+ because the two points are in differerit pieces 0
Taking x = [ (o), ¥ = f~Ho"), we get d(x, x) < 37" = d(f(x), f()
This shows that f is Lipschitz-continuous as well. 13

3—:1—

=3 "2 <3
1_“,

We have shown in particular that Qf is compact and totally dxsconnect :
us note in addition that every sequence in Q& can be approximated arbitraril
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by different sequences in Q8 hy changing only very remote entries. Thus every
point of £ is an accumulation point and Q¥ is a perfect set.

Proposition A.1.37 Cantor sets are compact, totally disconnected, and perfect.

Itis not hard to see that the space Q; = {0, 1}% with a product metric is in turn
homeomorphic to QF, and therefore it is also a Cantor set. To that end let

2n ifrn>0
1—-2n ifrn<o0

o Z > N, nw[

and f: QF 5 Q) ws woa= (... wz0iwpmmy . .. ), Endowing €, and QF with
any two of the product metrics (A.1.2) makes f a homeomorphism because two
sequences «, o are close if and only if they agree on a large stretch of initial entries,
Then the resulting sequences @ = fle) and o’ = f(o') agree on a long stretch of
entries around the Oth entry and hence are also close. Thus f is a continuous
bijection between compact spaces and therefore a homeomorphism by Proposi-
tion A.1.24, (It is as easy to see directly that f~'is continuous.)

A.1.8 General Properties of Cantor Sets
Theorem A.1.38 Every perfect totally disconnected compact metric space is g
Cantor sef,

We have seen that sequence spaces are perfect and compact; it is easy to see in
general that they are totally disconnected: If o # B are sequences, then o;  g; for
some index i. The set of sequences w with w; = o; is open, and likewise the set of
sequenceswithw; = g;. Butthese sets are disjoint and their union is the entire space.

Corollary A.1.39 Every nonempty, perfect, bounded, nowhere dense set on the line
is a Cantor set. .

Proof A perfect bounded set on the line is compact by the Heine-Borel Theorem (a
closed bounded subset of R” is compact). Being perfect, it also contains more than
one point. If it is not totally disconnected, then it has aconnected component with
more than one point and hence contains a nontrivial interval, contrary to being
nowhere dense, (J

A.1.9 Dyadic Integers _
Define the following metric d, on the group 7 of all integers: d(n, 7)) =0 and
d(m ) = [im— nlf, for n £ M, where

Itz =27%  if 5= 25 with an odd number /.

The completion of Z with respect to that metric is called the group of dyadic
integers and is usually denoted by Z,. It is a compact topological group.
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B.2 DIFFERENTIABILITY

A.2.1 The Derivative :

Amap is said to be differentiable ifit admits a good linear approximation. Werequire
that for each point there is a linear transformation that differs from the map by an
error that is smaller than linear as a function of the distance to the reference point:

Definition A.2.1 Let V, Wbe normed linear spaces, U C Vopen, and x € U.Amap
f: U— Wissaidtobedifferentiableat xif thereis alinearmap A: V — Wsuchthat
Wl B — fO) — AR

e Il

Tn this case A js said to be the derivative of f at x, and we write Df(x) := A.

Ifamap f:R"-> R™is differentiable at x, then Df{x} is the matrix of partial
derivatives at x (see Section 2.2.4.1), but the existence of all partial derivatives does
not imply differentiability.

A2.2 The C"-Topology

The sequence of functions f(x) := sin(nx)/n converges to 0 uniformly, but the
sequence of derivatives does not. Therefore, if oné wants to ensure convergence
of derivatives of a sequence of functions, one must impose it explicitly. The
C!-topology is an elegant way to formulate this. On the space of bounded functions
with bounded derivative we define the meiric

d(f, g) = max{sup d( f(x), glx}), sup d(Df{x), Dg(x))).
X X

Then d(f,, g — 0 means that f, —~ g and Dfy — Dg uniformly. Likewise, th
C'-topology is defined by the metric

d(f, ) = maxsup d(D' fx) D'g(x)).
<i<r x -

Theorem A.2.2 A space of bounded continuous functions with values in a com
plete space, endowed with the metric of uniform convergence, is a complete spac
Likewise, any space of bounded functions with bounded derivative (and values in;
complete space) is complete with the C'-topology. An analogous statement holds
for the C”-topology. : '

This generalization of Theorem A.1.13 and Theorem A.1.14 is an important rea
son for using these topologies.

£.2.3 The Mean Value Theorem and the Taylor Remainder _
The Mean Value Theorem is a basic and central result in differential calculus
connects the derivative with the behavior of a function on an interval.

Theorem A.2.3 If f: [a, bl — R iscontinuous and f is differentiable on (a. b},
there is a point x € {a, b) such that f(bB) — fla) = b— a} f'(x).
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Proof g(f) :=1(f(B) — fla)) — f(O{b— a) is continuous on (2, b} and differentiable
on (a, b) and g(a) = af(h) — bf(a) = g(b). If g is constant, then we are done. Other-

uire wise, g has an extremum g(x) at some x ¢ (a, b) by continuity. g is differentiable at
i an o x, hence 0 = g'(x) = Fib— f@— (B -a. O
Jint: :

A more sophisticated version of this result is used to establish the validity of a
map _ Taylor expansion. '
that i

Theorem A.2.4 If f: (a, B) — R has k+ 1 derivatives and xy < (a, b), then for every
x € (a, b) there exists a ¢ between x and Xp Stich that

()] ) (k+1)
flg=>" I—i(,—x'il(x — x4 L) (r — xo)**!,
i=0 )

(k4 1)
rtial
loes where 'Y denotes the ith derivative.
Proof Let  filx) =T, f0u)(x — w)i/il,  zi= (f(x) — fuld)/(x — 1", and
8 = fl&) — filth — 2t — x)*"* on {a, B,
the We will show that g®1(c) —0 for some ¢ between x and Xp. Since
nce gHINE = FR — (kg 1)z this implies f&(c} = (k4 1)1z, as required.
The We use that g (x) =0 for 0 < i < k since FP%) = f¥w) by definition.”
ons Combined with g(x) = 0 (by choice of z), this gives a ¢ between x and x; such that
g'(c1) = 0. Combining this with g'(x;) — 0 gives a ¢; between ¢; and xp such that
§"(¢;) = 0. Repeating k times gives the desired ¢. O
the A.2.4 Diffeomorphisms and Embeddings

The inverse of an invertible differentiable map need not be differentiable; x3 is an
example. Since having a differentiable inverse is useful, such maps have a name:
A differentiable map with differentiable inverse is said to be a diffeomorphism.

For our purposes it is useful to extend this notion to maps that are not surjective
{onto). We want to allow maps such as (x, y) > (x, ¥, ¥* + %) from the unit
disk to R?, but we wish to exclude > (¢, 7t} (mod 1) from R to the torus (see
Section 2.6.4), because its “inverse” is not continuous.

Definition A.2.5 Suppose U7 C R". A map f: U — R™is said to be an embedding
if f is differentiable, its derivative has rank n at every point, and f: U — f(l}isa
homeomorphism. :

In this definition one can replace either or both Euclidean spaces by a torus, a
cylinder, or a sphere of the corresponding dimension.

A.3 RIEMANN INTEGRATION IN METRIC SPACES

The notion of integration with respect to a “measure” appears many times
throughout the book.




