
Lecture notes in numerical linear algebra
Numerical methods for matrix functions

x4 Numerical methods for matrix functions

As the name suggests, a matrix function is a function mapping a matrix
to a matrix:

Matrix functions appear in many
scientific fields. The current theoretical
and numerical techniques for matrix
functions form a fundamental tool-set
to analyze and solve many matrix
problems. In 2011, the mathematics
panel of the European Research Council
granted a large five-year research project
on “Functions of Matrices: Theory and
Computation” with principal investi-
gator Nicholas Higham (http://en.
wikipedia.org/wiki/Nicholas_Higham).
We are in this course mainly concerned
with numerical methods and theory
required to derive and understand the
main properties of numerical methods.

f ∶ Cn×n → Cn×n. (4.1)

In our setting, the term matrix function will refer to not just any such
matrix mapping, but will refer to a specific class of matrix-valued func-
tions. In a sense, we mean the “natural generalization” of a scalar-
valued function f to matrices. With a slight abuse of notation we
can let f (z) represent a scalar-valued function and let f (A) represent
the associated matrix-valued function. The matrix function associated
with the scalar function f (z) = z2 is the matrix function f (A) = AA.
The matrix function associated with f (z) = (1 − z)/(1 + z) is f (A) =
(I + A)−1(I − A). The matrix exponential which is the matrix func-
tion extension of f (z) = exp(z), is commonly used in the study and
computation of ordinary differential equations. Other matrix func-
tions that we discuss further in this chapter is the matrix sign function
f (z) = sign(z), the square root function f (z) =

√
z and ϕ-functions,

ϕ(z) = (ez − 1)/z. In fact, a large number of elementary scalar func-
tions have been extended to matrices and used in various scientific
fields.

Note: If f (z) = (1 − z)/(1 + z) the two
matrix function definitions f (A) = (I +
A)−1(I−A) and f (A) = (I−A)(I+A)−1

are equal since I − A and (I + A)−1 com-
mute.

Following some definitions and general properties (Section 4.1) the
chapter is separated into general methods Section 4.2 and specialized
methods Section 4.3. For very large-scale problems we will see that we
can use Krylov methods (in Section 4.4), similar to the Krylov methods
we have seen for eigenvalue problems and linear systems of equations.

Not all matrix-valued functions are ma-
trix functions in our sense. The function
that multiplies a matrix by a constant
matrix f (A) = BA is a function of the
form (4.1) but it is not a natural general-
ization of a scalar-valued function and is
not a matrix function in our sense. Other
examples, such as f (A) = diag(A) and
f (A) = AT are also not matrix functions
in our sense.

x4.1 Definitions and general properties

There are several ways to define matrix functions. We give three defini-
tions, with slightly different domains of definition. The definitions are
equivalent for very large classes of functions. In particular, they are
equivalent for matrix function extension of a scalar-valued function
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which is analytic in C (entire functions), as we show in Section 4.1.4.
All three definitions lead to numerical methods.

4.1.1 Taylor expansion definition

Throughout this course we use the no-
tation: D(µ, r) denotes an open disk of
radius r centered at µ ∈ C,

D(µ, r) = {z ∈ C ∶ ∣z − µ∣ < r}

and D̄(µ, r) is the corresponding closed
disk.

If we want a definition which is consistent with matrix-matrix mul-
tiplications, there is essentially only one way to extend polynomials
to matrices. The matrix function corresponding to the polynomial
p(z) = α0 +⋯+ αkzk is

p(A) = α0 I +⋯+ αk Ak. (4.2)

Suppose now that the Taylor series of the scalar function f is conver-
gent for expansion point µ:

f (z) =
∞
∑
i=0

f (i)(µ)
i!

(z − µ)i. (4.3)

If we generalize polynomials using (4.2), the matrix generalization of
(z − µ)i is (A − µI)i. Therefore, in complete analogy with the poly-
nomial matrix function (4.2) we can define the matrix function via a
Taylor series. The following definition is the matrix generalization of
(4.2) and (4.3).

Definition 4.1.1 (Taylor definition). The Taylor definition with expansion
point µ ∈ C of the matrix function associated with f (z) is given by

f (A) =
∞
∑
i=0

f (i)(µ)
i!

(A − µI)i. (4.4)

This definition is valid for functions with convergent matrix-valued
Taylor series, which turns out to be the case if the function is analytic
in a sufficiently large domain. This is illustrated in the following the-
orem. In particular, a consequence of the following result is that (4.4)
is well-defined if the scalar-valued function is analytic in the complex
plane.

In Theorem 4.1.2, we make an assump-
tion about ∥A−µI∥. With a slightly more
advanced version of the proof, the as-
sumption can relaxed to the condition
that the eigenvalues A are contained in
D(µ, r).

Theorem 4.1.2 (Convergence of Taylor definition). Suppose f (z) is an-
alytic in D̄(µ, r) and suppose r > ∥A − µI∥. Then, with definition (4.4) of
f (A) and γ ∶= ∥A − µI∥/r < 1, there exists a constant C > 0 independent of
N such that

∥ f (A) −
N
∑
i=0

f (i)(µ)
i!

(A − µI)i∥ ≤ CγN → 0 as N →∞.
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Proof. From functional analysis we know that analyticity implies that
the derivatives of an analytic function cannot grow arbitrarily fast.
More precisely, for any function which is analytic in D̄(µ, r) there ex-
ists a constant Cr independent of i such that

∣ f (i)(µ)∣ ≤ Cr
i!
ri . (4.5)

The bound follows from (4.5), the triangle inequality and geometric
series:

Use: ∥Bi∥ ≤ ∥B∥i .

Use: (4.5)

Geometric series: If ∣γ∣ < 1,

∞
∑
i=p

γi
=

γp

1− γ
.

∥ f (A) −
N
∑
i=0

f (i)(µ)
i!

(A − µI)i∥ = ∥
∞
∑

i=N+1

f (i)(µ)
i!

(A − µI)i∥

≤
∞
∑

i=N+1

∣ f (i)(µ)∣
i!

∥A − µI∥i

≤ Cr

∞
∑

i=N+1

∥A − µI∥i

ri

≤ Cr
γN+1

1− γ

The proof is complete by defining C ∶= Crγ/(1− γ).

Taylor definition example

The following program computes sin(A) for a particular matrix A, by
using the Taylor expansion of sin(z). The same example is used below
in the other definitions.

>> A=[1,2; -5, 4]

A =

1 2

-5 4

>> m=21; FT=zeros(2);

>> for k=1:2:m; FT=FT+(A^k)*(-1)^((k-1)/2)/factorial(k); end

>> FT

FT =

8.339880980278327 -4.638979409410489

11.597448523526220 1.381411866162594

◯

4.1.2 Jordan form definition

Although the definition (4.4) is very natural, it turns out that matrix
functions can be more generally defined in a different way. First note
that a matrix function stemming from the Taylor definition commutes
with similarity transformation in the sense that

f (XBX−1) = X f (B)X−1 (4.6)
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and it commutes with the diag operator in the sense that Definition of diag operator:

diag(F1, . . . , Fk) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

F1
⋱

Fk

⎤
⎥
⎥
⎥
⎥
⎥
⎦

In matlab, the corresponding command
is blkdiag.

f (diag(F1, . . . , Fk)) = diag( f (F1), . . . , f (Fk)), (4.7)

where F1, . . . , Fk are square matrices. Therefore, if we want a definition
which is consistent with the Taylor definition, it must satisfy (4.6) and
(4.7). The definition of matrix functions that follows is based on (4.6)
and (4.7), where we select the transformation as the transformation
associated with the Jordan canonical form (JCF). Suppose A ∈ Cn×n

and let
A = X diag(J1, . . . , Jq)X−1 (4.8)

be the Jordan canonical form with

Ji =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λi 1
⋱ ⋱

⋱ 1
λi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Cni×ni . (4.9)

In order to be consistent with the Taylor defintion, the matrix function
f (A) must satisfy

f (A) ∶= X diag( f (J1), . . . , f (Jq))X−1.

If J1, . . . , Jq are scalars, which is the case if the matrix is diagonalizable,
this forms a definition since f (J1), . . . , f (Jq) are well defined. For non-
diagonalizable matrices, we need to define the meaning of a matrix
function applied to a Jordan block. We justify the definition of a matrix
function of a Jordan block with an example.

Jordan block example

Suppose p(A) is a polynomial of degree four p(A) = A4. Let us
investigate this function when A = J is a Jordan block

J =

⎡⎢⎢⎢⎢⎢⎢⎣

λ 1 0
0 λ 1
0 0 λ

⎤⎥⎥⎥⎥⎥⎥⎦

where λ = 1, λ = 2 and λ = 10.

>> p=@(A) A*A*A*A;

>> s=1; p([s 1 0; 0 s 1; 0 0 s])

ans =

1 4 6

0 1 4

0 0 1

>> s=2; p([s 1 0; 0 s 1; 0 0 s])

ans =

16 32 24
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0 16 32

0 0 16

>> s=10; p([s 1 0; 0 s 1; 0 0 s])

ans =

10000 4000 600

0 10000 4000

0 0 10000

From the results of the simulation, we identify that, at least for the
this Jordan block and this matrix function, the result of the matrix
function applied to a Jordan block satisfies

p(J) =

⎡⎢⎢⎢⎢⎢⎢⎣

p(λ) p′(λ) 1
2 p′′(λ)

0 p(λ) p′(λ)
0 0 p(λ)

⎤⎥⎥⎥⎥⎥⎥⎦

.

◯

The conclusion in the example turns out to be a general property, and
the matrix function of a Jordan block of size r can be consistently de-
fined via the first r − 1 derivatives of the function f evaluated in the
eigenvalue.

The Jordan form definition is more gen-
eral than the Taylor definition. The Jor-
dan form definition only requires a fi-
nite number of derivatives in the eigen-
values, whereas the Taylor definition re-
quires all derivatives in the expansion
point and a convergent Taylor series.
They are equivalent for many functions,
for instance all entire functions as is il-
lustrated later (in Theorem 4.1.5).

Definition 4.1.3 (Jordan canonical form (JCF) definition). Suppose A ∈
Cn×n and let X and J1, . . . , Jq be the Jordan canonical form (4.8)-(4.9). The
JCF-definition of the matrix function f (A) is given by

f (A) ∶= X diag(F1, . . . , Fq)X−1, (4.10)

where

Fi = f (Ji) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (λi)
f ′(λi)

1! ⋯ f (ni−1)(λi)
(ni−1)!

⋱ ⋱ ⋮
⋱ f ′(λi)

1!
f (λi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Cni×ni . (4.11)

Jordan definition example

We continue the example for the Taylor definition.

>> [V,D]=eig(A);

>> F=diag(sin(diag(D)));

>> FJ=V*F*inv(V)

FJ =

8.339880979874099 -4.638979409584841

11.597448523962106 1.381411865496835

◯
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4.1.3 Cauchy integral definition

Suppose f is analytic inside and on a simple, closed, piecewise-smooth
curve Γ, which encloses a point z = x ∈ C counter-clockwise. From
complex analysis, in particular Cauchy’s integral formula, we know
that

f (x) = 1
2iπ ∮Γ

f (z)
z − x

dz. (4.12)

Note that the only way the right-hand side of (4.12) depends on x,
is in the expression 1/(z − x). We now want to generalize this formula
when x is a matrix. In order to reach a different definition of matrix
functions we replace 1/(z − x) by (zI −X)−1.

The Cauchy integral definition is the ba-
sis of the derivation of Krylov methods
for matrix functions in Section 4.4Definition 4.1.4 (Cauchy integral definition). Suppose f is analytic in-

side and on a simple, closed, piecewise-smooth curve Γ, which encloses the
eigenvalues of A once counter-clockwise. The Cauchy integral definition of
matrix functions is given by

f (A) ∶= 1
2iπ ∮Γ

f (z)(zI − A)−1 dz.

Cauchy integral definition example

We illustrate the Cauchy integral definition by integrating over a circle
of radius r. The parameterization z = reiθ of the circle gives, dz/dθ =
ireiθ and

f (A) = 1
2iπ ∫

2π

0
f (reiθ)((reiθ I − A)−1) ireiθ dθ,

which we for illustration purposes integrate numerically:

If we integrate over a circle of ra-
dius r = 5 we get the correct matrix
function value. When the radius is
smaller than the absolute value of the
largest eigenvalue, we get a different
result. The eigenvalues of the matrix in
this example are λi ≈ 2.5± 2.8i.

>> g=@(z) sin(z)*inv(z*eye(size(A))-A)

>> r=5;

>> FC=quadv(@(t) g(exp(1i*t)*r)*1i*r*exp(1i*t),0,2*pi)/(2i*pi)

FC =

8.3399 + 0.0000i -4.6390 + 0.0000i

11.5974 - 0.0000i 1.3814 + 0.0000i

We get the wrong result when the contour does not include the eigenvalues.

>> r=3;

>> FC2=quadv(@(t) g(exp(1i*t)*r)*1i*r*exp(1i*t),0,2*pi)/(2i*pi)

FC2 =

1.0e-08 *
0.5648 - 0.0000i -0.1300 - 0.0000i

0.3251 + 0.0000i 0.3697 + 0.0000i

◯
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4.1.4 Equivalence of definitions

The definitions above have different domains of definitions. However,
for a large class of functions the definitions are equivalent.

Equivalence illustration

We observe directly from the examples in the definitions above that
the definitions are equal up to approximation errors, for this specific
example.

>> should_be_zero=norm(FT-FJ)

should_be_zero =

8.008177121446691e-10

>> should_be_zero=norm(FJ-FC)

should_be_zero =

3.527726719978948e-08

>> should_be_zero=norm(FT-FC)

should_be_zero =

3.519037727771136e-08

◯

More formally, a sufficient condition for the definitions to be equiva-
lence is that the functions are analytic in C.

The proof of equivalance in Theo-
rem 4.1.5 is available in appendix but not
a part of the course.

Theorem 4.1.5 (Equivalence of the matrix function definitions). Sup-
pose f is an entire function and suppose A ∈ Cn×n. Then, the matrix function
definitions (Definition 4.1.1, Definition 4.1.3 and Definition 4.1.4) are equiv-
alent.

x4.2 Methods for general matrix functions

4.2.1 Truncating the Taylor series (naive approach)

We saw in Section 4.1.1 that matrix functions can be defined with Tay-
lor series, and that the truncated Taylor series converges for analytic
functions. The truncated Taylor series can be used as a method to
compute matrix functions when the derivatives of the scalar-valued
function are explicitly available.

In general we need N matrix vector products, which (unless there
is particular structure) can be computed on O(n3). Hence, the total
computation time of a truncated Taylor series is

O(Nn3).

The value N can be large if the series converges slowly. In comparison
to other general methods below, the computation time of truncated
Taylor series is mostly not competitive.
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4.2.2 Eigenvalue-eigenvector approach (naive approach)

If the matrix is diagonalizable, the Jordan form consists of diagonal
elements, and the columns of X consists of the eigenvectors. Hence,
the formula

f (A) = X diag( f (λ1), . . . , f (λn))X−1

gives a procedure to compute f (A) if we can compute X and λ1, . . . , λn.
From previous parts of the course: The
standard rough estimate for the compu-
tation of the eigenpairs of a dense matrix
with a QR-method O(n3).

Under the assumption that computing all eigenpairs has compu-
tational cost O(n3), an eigen-decomposition approach has computa-
tional cost

O(n3).

For large-scale problems, the eigendecomposition approach is in gen-
eral faster than the truncated Taylor series. However, we learned in
other parts of this course that the Jordan canonical form is not numer-
ically stable with respect to unstructured rounding errors. Very small
rounding errors can generate very large errors in the output. This is
often the case for non-symmetric matrices where the eigenvalues are
close to eachother. This can seriously jeopardize the reliability of the
method.

4.2.3 The Schur-Parlett method

An advanced version of the Schur-
Parlett method is implemented in the
matlab command funm.

The Schur form does not suffer from the same rounding errors disad-
vantages as the Jordan form. For this reason, in the parts of the course
where we learned about eigenvalue computations, in particular when
we learned the QR-method, we focused the Schur factorization, rather
than a Jordan decomposition. The Schur-Parlett method is analogously
based on the Schur factorization rather than the Jordan decomposition,
which we used (for diagonalizable matrices) in Section 4.2.2.

Suppose A = Q∗TQ is a (complex) Schur factorization, where Q ∈
Cn×n is an orthogonal matrix and T an upper triangular matrix. From
the fact that all definitions commute with similarity transformation
(4.6) we can use that

f (A) = Q∗ f (T)Q. (4.13)

Hence, an approach based on the Schur factorization can be imple-
mented in a straightforward way with (4.13) if we know how to com-
pute the matrix function for the triangular matrix T. This can be done
as follows.

As a first step to a general method for triangular matrices, we de-
rive an explicit formula for two-by-two triangular matrices. All of the
matrix-function definitions satisfy

FT = TF (4.14)

Lecture notes - Elias Jarlebring - Autumn 2018

8

version:2018-10-25, Elias Jarlebring - copyright 2015-2018



Lecture notes in numerical linear algebra
Numerical methods for matrix functions

where F = f (T). Consequently,

[ f11 f12

0 f22
] [t11 t12

0 t22
] = [t11 t12

0 t22
] [ f11 f12

0 f22
]

The diagonal elements are explicitly f11 = f (t11) and f22 = f (t22). The
equality corresponding to the (1,2) entry is

f11t12 + f12t22 = t11 f12 + t12 f22.

This scalar equation can be solved for f12,

f12 ∶= t12
f (t22) − f (t11)

t22 − t11
.

The formula is a special case of the more general result.
Graphical illustration of the elements of
F = f (T) and T required to compute fij
in Theorem 4.2.1:

F ∶ j
↓

+ + + + + ◻ ◻ ◻

0 + + + + + ◻ ◻

i → 0 0 + + + + fij ◻

0 0 0 + + + + ◻

0 0 0 0 + + + +

0 0 0 0 0 + + +

0 0 0 0 0 0 + +

0 0 0 0 0 0 0 +

T: j
↓

+ + + + + + + +

0 + + + + + + +

i → 0 0 + + + + + +

0 0 0 + + + + +

0 0 0 0 + + + +

0 0 0 0 0 + + +

0 0 0 0 0 0 + +

0 0 0 0 0 0 0 +

Theorem 4.2.1. Suppose T ∈ Cn×n is an upper triangular matrix with
distinct eigenvalues and denote F ∶= f (T) with elements fij, i = 1, . . . , n,
j = 1, . . . , n. Then, for any i and any j > i,

fij =
s

tjj − tii
(4.15)

where

s = tij( f jj − fii) +
j−1

∑
k=i+1

tik fkj − fiktkj.

Proof. Consider the ith row and jth column of the equality 0 = FT−TF,

0 =
n
∑
k=1

fiktkj −
n
∑
k=1

tik fkj =
j

∑
k=i

fiktkj − tik fkj

In the second equality we used that F and T are triangular matrices
tik = fik = 0 when k < i and tkj = fkj = 0 when k > j. We separate the
terms k = i and k = j from the sum and rearrange the terms

fiitij + fijtjj − tii fij − tij f jj =
k=j−1

∑
k=i+1

tik fkj − fiktkj. (4.16)

The expression (4.15) follows from solving (4.16) for fij.

Clearly the diagonal elements of F are known from the start since
they are explicitly fii = f (tii), i = 1, . . . , n. We can now compute the
elements of F by working one subdiagonal at a time. Let ◻ denote
values that we do not know yet and let + denote quantities we have
already computed. By applying Theorem 4.2.1 repeatedly for different
i and j we can proceed as follows.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ ◻ ◻ ◻
+ ◻ ◻
+ ◻
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

i=1
j=2
⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ + ◻ ◻
+ ◻ ◻
+ ◻
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

i=2
j=3
⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ + ◻ ◻
+ + ◻
+ ◻
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

i=3
j=4
⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ + ◻ ◻
+ + ◻
+ +
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

i=1
j=3
⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ + + ◻
+ + ◻
+ +
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

i=2
j=4
⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ + + ◻
+ + +
+ +
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

i=1
j=4
⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ + + +
+ + +
+ +
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The complete more general process is summarized in Algorithm 1.

Input: A triangular matrix T ∈ Cn×n with distinct eigenvalues
Output: The matrix function F = f (T)
for i = 1, . . . , n do

fii = f (ti,i)
end
for p = 1, . . . , n − 1 do

for i = 1, . . . , n − p do
j = i + p
s = tij( f jj − fii)
for k=i+1,. . . ,j-1 do

s = s + tik fkj − fiktkj

end
fij = s/(tjj − tii)

end
end

Algorithm 1: Simplified Schur-Parlett method

We call Algorithm 1 simplified Schur-Parlett since in practice one
needs to consider a number of issues. Most importantly, the reasoning
above is only for matrices with distinct eigenvalues. If the eigenvalues
are close to eachother, the approach may suffer from stability issues.
This can be resolved by using a different block Schur form and a dif-
ferent method when the distance between eigenvalues is small.

x4.3 Methods for specialized matrix functions

4.3.1 Scaling-and-squaring for the matrix exponential

We saw above that the Taylor approximation can give approximations,
which match the derivatives of the function in an expansion point µ.
In our derivation of the most important method for the matrix expo-
nential, we will use another useful class of approximants is the Padé
approximants, which are rational functions

Rpq(z) =
Npq(z)
Dpq(z)

where Npq and Dpq are appropriate polynomials. Similar to the Taylor
expansion, the polynomials Npq and Dpq are constructed such that they
match the derivative of the function (at the origin).

The matrix exponential is the most
commonly used matrix function. The
scaling-and-squaring algorithm is a very
robust algorithm for the matrix expo-
nential and it is implemented in the mat-
lab function expm. A robust implemen-
tation of scaling-and-squaring was avail-
able already in one of the very first mat-
lab versions. According to some expert
in numerical linear algebra, this was one
of the main reasons for the early success
of matlab.

For the matrix exponential, it can be shown that the Padé approxi-
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mants are

Npq(z) =
p

∑
k=0

(p + q − k)!p!
(p + q)!k!(p − k)!

zk

Dpq(z) =
q

∑
k=0

(p + q − k)!q!
(p + q)!k!(p − k)!

(−z)k.

These rational functions Rpq are constructed such that p+ q derivatives
of Rpq match the derivatives of ez.
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Figure 4.1: Illustration of the Padé ap-
proximation for the matrix exponential.

This type of Padé approximants are only good approximations near
the origin. They can be used to directly good approximations of the
matrix exponential

exp(A) ≈ Rpq(A) = Dpq(A)−1Npq(A),

when ∥A∥ is small.
The property (4.17) can be derived from
the simple fact that

f (A)g(A) = h(A)

where h(z) = f (z)g(z).

It will in general not be a good approximation if ∥A∥ is large. For-
tunately, this problem can be handled by exploiting the fact that

exp(A) = exp(A/m)m, (4.17)

for any m. In particular, we may scale A by m such that Rpq(A/m) is an
accurate approximation of exp(A/m). The approximation of exp(A),
can subsequently be computed by forming Rpq(A/m)m. If m is a power
of two, m = 2j, then this last stage can be done very efficiently, with j
matrix-matrix multiplications.

Further details of the error analysis can
be found in references [4, Chapter 11.3]By further considerations of the approximant it can be shown that

if

∥A∥∞
2j ≤ 1/2
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then there exists E ∈ Rn×n such that

Fpq = eA+E (4.18)

AE = EA (4.19)

∥E∥∞ ≤ ε(p, q)∥A∥∞ (4.20)

ε(p, q) = 23−(p+q) p!q!
(p + q)!(p + q + 1)!

(4.21)

By using these bounds we arrive at the main algorithm for the matrix
exponential. The algorithm consists of first computing the rational
function and subsequently repeatedly squaring the result.

Input: δ > 0 and A ∈ Rn×n

Output: F = exp(A + E) where ∥E∥∞ ≤ δ∥A∥∞.
begin

j = max(0, 1+floor(log2(∥A∥∞)))
A = A/2j

Let q be the smallest non-negative integer such that
ε(q, q) ≤ δ.

D = I; N = I; X = I; c = 1
for k = 1 ∶ q do

c = c(q − k + 1)/((2q − k + 1)k)
X = AX; N = N + cX; D = D + (−1)kcX

end
Solve DF = N for F
for k = 1 ∶ j do

F = F2

end
end

Algorithm 2: Scaling-and-squaring for the matrix exponential

4.3.2 Matrix square root

The matrix square root can be used to
solve partial-differential equations with
certain types of absorbing boundary
conditions. It has applications in for in-
stance quantum physics (density func-
tional theory) and it can be used to com-
pute matrix logarithms and polar de-
compositions.

We have now seen many examples of matrix functions which stem-
ming from entire functions. The matrix square root is an important
example of a function which is not analytic in the entire plane. In fact,
it is usually defined by a system of equations rather than as an exten-
sion of a scalar valued function. Any matrix X that satisfies X2 = A
is called a matrix square root of A. If A does not have any eigenval-
ues in (−∞, 0] ⊂ C, there exists a specific matrix square root called
the principal square root, which we can define with the definitions
above as follows. Suppose F = f (A) is defined with Definition 4.1.3 for
f (x) =

√
x. Then,

F2 = X diag(F1, . . . , Fq)X−1X diag(F1, . . . , Fq)X−1 =
X diag(F2

1 , . . . , F2
q )X−1 = X diag(J1, . . . , Jq)X−1 = A,
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since

F2
i = Ji, i = 1, . . . , q.

For the scalar case, x =
√

a is obviously a root to the nonlinear scalar
equation g(x) = x2 − a = 0. Newton-Raphson’s method for g(x) is,
xk+1 = xk − g(xk)/g′(xk) = xk − (x2

k − a)/2xk = xk/2+ a/2xk.
The matrix function generalization is

Xk+1 =
1
2
(Xk +X−1

k A). (4.22)

Although the iteration (4.22) can be shown to be equivalent to New-
ton’s method in matrix form and therefore exhibits local quadratic con-
vergence in general, it is in a certain sense numerically unstable. This
can be explained by the fact that local convergence of (4.22) requires
commutativity of X0, X1, . . .. Due to round-off errors the commuta-
tivity is not satisfied. Suppose we have an accurate approximation of
A1/2 such that Xk = A1/2 + ε∆, where ε will be thought of as a small
scalar parameter. Then,

The reasoning in (4.23) suggests at least
loss of quadratic convergence due to
round-off errors, and justifies the bad
performance of (4.22).

Xk+1 = 1
2
(A1/2 + ε∆ + (A1/2 + ε∆)−1 A) (4.23a)

= A1/2 + ε

2
(∆ − A−1/2∆A1/2) +O(ε2). (4.23b)

The term ∆ − A−1/2∆A1/2 vanishes if ∆ commutes with A, otherwise it
will in general not vanish.

If we want to use the Schur-Parlett
method (in Section 4.2.3) to compute
the principal matrix square root we
need to compute a Schur factorization of
A. The Denman-Beavers iteration (4.24)
does not require a Schur factorization,
but instead requires an inverse. In some
situations the inverse is easier to com-
pute than the Schur factorization, for in-
stance if A is tridiagonal.

Denman and Beavers proposed [3] an equivalent variant of (4.22)
which does not exhibit the same sensitivity with respect to rounding
errors. The Denman-Beavers iteration is derived as follows. Due to
the fact that X0 = A, the matrices X0, X1, . . . commute. Hence, AX−1

k =
A1/2X−1

k A1/2 and equation (4.22) can be rewritten as

Xk+1 =
1
2
(Xk + A1/2X−1

k A1/2).

By setting Yk = A−1/2Xk A−1/2, we have an iteration with two matrices

Xk+1 = 1
2
(Xk +Y−1

k ) (4.24a)

Yk+1 = 1
2
(Yk +X−1

k ) (4.24b)

with initial conditions X0 = A and Y0 = I. By construction, if Xk → A1/2,
Yk → A−1/2.

It can be shown that this iteration is not as sensitive to rounding
errors. In contrast to (4.22) the convergence of the Denman-Beavers
iteration (4.24) does not depend in the same way on commutativity.
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4.3.3 Matrix sign function

In systems and control, the underlying
method to solve the Riccati equation is
based on the matrix sign function.

The (scalar-valued) sign function is for real numbers defined as

sign(a) =
⎧⎪⎪⎨⎪⎪⎩

−1 a < 0

1 a > 0

and normally undefined for a = 0. The matrix sign function is another
One of the leading methods in quan-
tum chemistry is derived from the ma-
trix sign function.

matrix function which appears frequently in various fields. In order to
construct a matrix function generalization, we first generalize the sign
to complex numbers. We here work only with the following property
which generalizes consistently to complex numbers,

sign(a) = ∣a∣
a
=

√
a2

a
.

We have in the previous section seen how to define the matrix square
root, so we can in a consistent way generalize the matrix sign as follows

sign(A) ∶= A−1
√

A2. (4.25)

The previous section directly also gives us an iterative approach for the
matrix sign function, by first computing B = A2, C =

√
B multiplying

by A−1C. However, rather than taking these separate steps it turns
out to be advantageous to integrate the operations of such a Newton
approach (4.22) into a quite simple iteration. If we apply (4.22) to
compute the square root of the square, we have, X0 = A2 and

Xk+1 =
1
2
(Xk + A2X−1

k ) (4.26)

and sign(A) = A−1X∞. We now rephrase the iteration by defining

Sk = A−1Xk, (4.27)

such that sign(A) = S∞. Note that S0 = A−1X0 = A−1 A2 = A. More-
over, after carrying out the substitution (4.27), (4.26) can be equivalenty
phrased as

Sk+1 =
1
2
(Sk + S−1

k ). (4.28)

The iteration (4.28) is usually referred to as the Newton method for
matrix sign function.

* Theorem of equivalence *
It has global quadratic convergence in exact arithmetic, in the fol-

lowing sense.

Theorem 4.3.1 (Global quadratic convergence of (4.28)). Suppose A ∈
Rn×n has no eigenvalues on the imaginary axis. Let S = sign(A), and Sk be
generated by (4.28). Let

Gk ∶= (Sk − S)(Sk + S)−1. (4.29)

Then,
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• Sk = S(I +Gk)(I −Gk)−1 for all k,

• Gk → 0 as k →∞,

• Sk → S as k →∞, and

•
∥Sk+1 − S∥ ≤ 1

2
∥S−1

k ∥∥Sk − S∥2. (4.30)

Proof. From the fact that SkS = SSk and S2 = I, we have

(Sk ± S)2 = S2
k ± 2SSk + I

= Sk(Sk + S−1
k ± 2S)

= 2Sk(Sk+1 ± S) (4.31)

The inequality (4.30) follows by taking norms of (4.31) with the minus
sign. Now note that (4.31) imply that

If all eigenvalues of a matrix B are less
than one in modulus, we have

∥Bm
∥ = ∥V−1ΛmV∥ ≤ ∥V−1

∥∥V∥∥Λm
∥ → 0

when m →∞.

Gk+1 = (Sk+1 − S)(Sk+1 + S)−1 =
S−1

k (Sk − S)2(Sk + S)2Sk = (Sk − S)2(Sk + S)−2 = G2
k (4.32)

such that Gk = G2k

0 . The eigenvalues of G0 are µ = (λ − sign(λ))/(λ +
sign(λ)) such that ∣µ∣ < 1 and Gk → 0. Finally, the proof is completed
by noting that

Sk = S(I +Gk)(I −Gk)−1.

The Riccati equation (4.33) is an impor-
tant equation in systems and control, in
particular stochastic and optimal con-
trol. Riccati equations can be solved with
the MATLAB command care.

Sign function and Riccati equation

An important application of matrix sign function is its use in a solu-
tion method for quadratic matrix equation called the Riccati equation

G + ATX +XA −XFX = 0. (4.33)

It can be solved for X when F and G symmetric positive definite as
The matrix sign function approach is
considered one of the leading numeri-
cal methods for the Riccati equation. A
derivation of the formula in the example
can be found in [2].

follows. For illustative purposes we computed the matrix sign with
formula (4.25).

>> A=[2 1 ; 2 2]; F=[5 4; 4 6];G=[1 -1 ; -1 3];

>> K=[A’ G; F -A];

>> signm=@(X) inv(X)*sqrtm(X^2);

>> W2=signm(K)-eye(4);

>> [Q,R]=qr(W2(:,1:2));

>> X=-R\Q’*W2(:,3:4);

>> norm(G+A’*X+X*A-X*F*X)

ans =

4.2717e-15

◯
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x4.4 Krylov methods for f (A)b
We have above seen several methods to compute f (A) for specialized
f as well as general situations. These methods are mostly suitable for
dense matrices. We will now see a method which is suitable for large
and sparse problems. In many applications, it is sufficient to compute
the action of the matrix function on a vector:

f (A)b (4.34)

where b ∈ Cn. The method we present next computes (4.34) directly,
instead of first computing f (A) and then multiplying by b. It is based
on Arnoldi’s method and the only way A is accessed in the algorithm
is via matrix-vector products.

4.4.1 Derivation of Arnoldi approximation of matrix functions

The Cauchy integral formula definition (Definition 4.1.4) can be com-
bined with the quantity we want to compute (4.34) such that

f (A)b = −1
2iπ ∮Γ

f (z)((A − zI)−1b) dz. (4.35)

In the approach we take now, the shifted linear system of equations

x = (A − zI)−1b, (4.36)

in (4.35) is approximated by means of Krylov subspace approxima-
tions.

Arnoldi decomposition for shifted linear systems

Our approximation of (4.36) is computed by applying Arnoldi’s method
to the shifted linear system. We first establish some properties of
Arnoldi’s method when it is applied to a linear systems.

As we have seen earlier in the course, a
Krylov subspace is defined by the span
of the iterates of the power method,

Km(A, b) ∶= span(b, Ab, . . . , Am−1b).

Due to the fact that the span is unchanged by adding or subtracting
multiples of the vectors, from the definition of a Krylov subspace one
can verify that

Km(A − σI, b) = Km(A, b).

This implies that the Krylov subspace is independent of shift. The
The shift-invariance illustrated in
Lemma 4.4.1 shows that from the
Arnoldi decomposition of a matrix, we
can construct the Arnoldi decomposi-
tion of the shifted matrix without any
additional cost.

Arnoldi method is a procedure which generates an Arnoldi factoriza-
tion,

AQm = QmHm+1,m + eT
mqm+1hm+1,m, (4.37)

where the columns of Qm span the associated Krylov subspace. The
shift-invariance holds also for the Arnoldi factorization.

Lemma 4.4.1. Suppose Qm ∈ Cn×m, Hm ∈ C(m+1)×m is an Arnoldi factor-
ization (4.37) associated with Km(A, b).
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Then, for any σ ∈ C, Qm ∈ Cn×m and Hm − σIm+1,m is an Arnoldi factor-
ization associated with Km(A − σI, b),

(A − σI)Qm = Qm+1(Hm − σIm+1,m). (4.38)

Notational convenience in (4.38):

Im+1,m =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
⋱

1
0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R(m+1)×m.

Proof. The conclusion (4.38) follows from subtracting σQm from the
Arnoldi factorization AQm = Qm+1Hm = Qm Hm + hm+1,mqm+1eT

m.

Hence, the Arnoldi factorization associated with Km(A − σI, b) can
be easily reconstructed from the Arnoldi factorization associated with
Km(A, b), by shifting the Hessenberg matrix Hm and using the same
basis matrix Qm.

FOM is an abbreviation for full orthogo-
nalization method. The name was histori-
cally given to distinguish it from other
(now less used) methods based on in-
complete orthogonalization in the un-
derlying Gram-Schmidt process.

GMRES vs FOM: The approximation
(4.39) corresponds to an element of
Km(A, b) such that the residual satis-
fies QT

m(Ax̃ − b) = 0, whereas the GM-
RES approximation corresponds to an
element of Km(A, b) which minimizes
minx∈Km(A,b) ∥Ax − b∥2 = ∥Ax̃ − b∥2.

FOM for shifted linear system of equations

In the part in this course on sparse linear systems, we learned that
GMRES was a natural procedure to extract an approximation of a lin-
ear system by means of minimizing the residual over approximations
in a Krylov subspace. For the purpose of approximating f (A)b, via
approximation of (A − zI)−1b we will work with a slightly different
way to extract an approximation from the Krylov subspace, called the
FOM-approximation.

We define the FOM-approximation of the linear system Ax = b by

x̃ = Qm H−1
m QT

mb = Qm H−1
m e1∥b∥. (4.39)

This approximation can be derived by assuming that x̃ ∈ Km(A, b) and
imposing that the residual is orthogonal to the mth Krylov subspace,
QT

m(Ax̃ − b) = 0.
Due to Lemma 4.4.1, the Krylov approximation of the shifted linear

system (A − σI)x = b is

x̃ = Qm(Hm − σI)−1e1∥b∥. (4.40)

Note that this approximation can be computed for many σ by only
computing one Arnoldi factorization.

The Krylov approximation of a matrix function

By using the approximation stemming from FOM applied to a linear
system expressed in (4.40) with the Cauchy integral formulation (4.35),
we have

f (A)b ≈ −1
2iπ ∮Γ

f (z)Qm(Hm − zI)−1e1∥b∥ dz =

Qm
1

2iπ ∮Γ
f (z)(zI − Hm)−1 dz(e1∥b∥) = Qm f (Hm)e1∥b∥.

This serves as a justification of our approximation scheme.

Lecture notes - Elias Jarlebring - Autumn 2018

17

version:2018-10-25, Elias Jarlebring - copyright 2015-2018



Lecture notes in numerical linear algebra
Numerical methods for matrix functions

Definition 4.4.2 (Krylov approximation of a matrix function). Let Qm ∈
Cn×m and Hm,m ∈ Cm×m correspond to an Arnoldi factorization (4.37) of the
matrix A with q1 = b/∥b∥. The Krylov approximation of a matrix function is
defined as

fm ∶= Qm f (Hm)e1∥b∥. (4.41)

Note that the Krylov approximation (4.41) also requires the evalu-
ation of a matrix function. However, the Hessenberg matrix Hm is in
general much smaller than the original problem and computing f (Hm)
is relatively inexpensive in comparison to carrying out the Arnoldi
method, at least if m ≪ n, which is typically the case for large and
sparse problems.

Example

For many problems, the convergence is superlinear in practice. See the
video demonstration

http://www.math.kth.se/~eliasj/krylov_matfun_approx.mp4

4.4.2 Convergence theory of Krylov approximation of matrix func-
tions

Recall: A normal matrix is a matrix satis-
fying AT A = AAT , which is the case for
instance if the matrix is symmetric. Not
all normal matrices are symmetric matri-
ces.

Similar to the Arnoldi method for eigenvalue problems and GMRES,
the convergence can be characterized with a min-max expression. To
illustrate the convergence, we present only a result for normal matri-
ces. Unlike the other min-max bounds in this course, the maximum is
not taken over a discrete set, but a continuous convex compact set Ω
containing the eigenvalues of A.

The proof of Theorem 4.4.3 is beyond
the scope of the contents of the course.
A proof can be found in [Error estima-
tion and evaluation of matrix functions via
the Faber transform, Beckermann, Reichel,
SIAM J. Numer. Anal., 47:3849-3883,
2009]

Theorem 4.4.3. Suppose A ∈ Cn×n is a normal matrix and suppose Ω ⊂ C

is a convex compact set such that λ(A) ⊂ Ω. Let fm be the Krylov approxi-
mation of f (A)b defined by (4.41). Then,

∥ f (A)b − fm∥ ≤ 2∥b∥ min
p∈Pm−1

max
z∈Ω

∣ f (z) − p(z)∣.

Interpretation of bound

The bound gives several qualitative interpretations of the error. Suf-
ficient conditions for fast convergence can be easily identified: The
method will work well if

• f (z) can be well approximated with low-order polynomials

• λ(A) are clustered together such that Ω can be chosen small
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Similar to other min-max bounds in this course, qualitative under-
standing can be found by bounding using particular choices of the
polynomials. Let qm be the truncated Taylor expansion

qm(z) ∶=
m
∑
i=0

f (m)(0)
i!

zm.

Hence, rm(z) = f (z)− qm is the remainder term in the Taylor expansion
of f . Suppose now that Ω is a subset of a disk of radius ρ centered at
the origin Ω ⊂ D(ρ, 0). Then

max
z∈Ω

rm(z) ∼
ρm−1

(m − 1)!

and ∥ f (A)b − fm∥ ≤ em ∼ ρm−1

(m−1)! → 0 as m → ∞. This shows that the
method is convergent. The speed of convergence is usually much
faster than what is predicted by this Taylor series bound.

4.4.3 Application of Krylov methods for exponential integrators

Typically, in our setting, (4.42) stems
from the discretization of a partial dif-
ferential equation and n ≫ 1

The Krylov approximation techniques for matrix functions have turned
out to be useful in combination with techniques for differential equa-
tions. We can use them to numerically compute solutions to the ordi-
nary differential equation (ODE),

y′(t) = g(y(t)), y(0) = y0 (4.42)

where y(t) ∈ Cn. In the method class called exponential integrators, The function (4.43) has a removable sin-
gularity at z = 0. With a slight abuse
of notation we remove it by redefining
ϕ(0) ∶= 1 such that ϕ is an entire func-
tion. Graphically:

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

x

ϕ(x)
ex

we use the solution of an approximating linear ODE as a method to
integrate the nonlinear ODE (4.42).

A simple exponential integrator can derived by explicitly solving
the inhomogeneous linear ODE. For the formulation we use the matrix
function corresponding to ϕ given by

ϕ(z) ∶= ez − 1
z

. (4.43)

Lemma 4.4.4 (Explicit solution linear inhomogeneous ODE). The linear
inhomogeneous ODE with right-hand side g(y) = g1(y) ∶= Ay + b and

y′(t) = Ay(t) + b = g1(y(t)), y(0) = y0, (4.44)

has a solution explicitly given by

y(t) = y0 + tϕ(tA)g1(y0). (4.45)

Proof. Although the proof can be done by directly differentiating (4.45)
and collecting terms, it is more instructive to carry out a constructive
proof. Note that the solution to (4.44) satisfies

y(t) = exp(tA) (y(0) +∫
t

0
exp(−τA)b dτ) (4.46)
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From the Taylor definition of the matrix exponential we can integrate
explicitly,

∫
t

0
exp(−τA) dτ = −A−1(exp(−tA) − I)

such that (4.46) simplifies to

Use: A−1 exp(tA)A = exp(tA)y(t) = exp(tA)y(0) − exp(tA)A−1(exp(−tA) − I)b

= (y(0) + A−1(exp(tA) − I)Ay(0)) + (A−1(exp(tA) − I)b)

= y(0) + tϕ(tA)g1(y(0)), (4.47)

which proves (4.45).

The formula (4.45) is exact for the ODE (4.44), but in general not
for the nonlinear ODE (4.42). The simplest exponential integrator for
(4.42) is based on applying (4.45) as a time-stepping method for (4.42).
We approximate y1 ≈ y(h) by

y1 = y0 + hϕ(hA)g(y0) (4.48)

where A = g′(y0) is the Jacobian of g. The approximation techniques
can be repeated.

Definition 4.4.5 (Forward Euler exponential integrator). Let 0 = t0 <
t1 < ⋯ < tN . The forward Euler exponential integrator associated with
(4.45) for (4.42) generate the approximations yk ≈ y(tk), k =, . . . , N defined
as

yk+1 = yk + hk ϕ(hk Ak)g(yk) (4.49)

where hk = tk+1 − tk and Ak ∶= g′(yk).

The method in Definition 4.4.5 is exact for the linear inhomogeneous
case (4.44), and one step can be proven to be second order in h in the
general case.

The computationally dominating part in the evaluation of (4.49) is
the computation of ϕ(hA)g(y0). This quantity is exactly what we com-
puted in with the Krylov subspace techniques in the previous section.

Example of exponential integrator

Let f (y) = Ay + c(bTy)2 and y(0), b, c ∈ Rn. Then, the Jacobian is given
by

f ′(y) = A + 2(bTy)cbT .

A simple implementation of the forward Euler exponential integrator
for a fixed number of Arnoldi steps (m) and equidistant time-step (h =
1/N) can be done as follows.

Illustration of how well ϕ(hA) f is
approximated with the Krylov method
in one step of the exponential Euler
method. Faster convergence is observed
for smaller h.
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h = 0.02

>> m=20; % Number of Arnoldi steps

>> randn(’seed’,0); rand(’seed’,0); % reproducability of example

>> A=-gallery(’wathen’,100,100); n=length(A);
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>> b=zeros(n,1); b(round(n/2))=1; b=sparse(b); c=b;

>> N=10; tv=linspace(0,1,N+1); h=tv(2)-tv(1);

>> J=@(y) A+2*(b’*y)*(c*b’);;

>> g=@(y) A*y+c*(b’*y)^2;

>> y0=eye(n,1); y=y0;

>> for k=1:N

>> v=g(y);

>> [Q,H]=arnoldi(J(y),v,m);

>> phig=Q(:,1:m)*(varphi(h*H(1:m,1:m))*eye(m,1));

>> y=y+h*phig*norm(v);

>> end

>> sol=ode45(@(t,v) g(v), [0,1],y0,{’RelTol’,1e-10});

>> rel_err=norm(sol.y(:,end)-y)/norm(y)

rel_err =

2.9768e-06

◯

A more thorough convergence analysis (beyond the scope of this
course) shows that the error behaves as

∥ϕ(tA)b − fm∥ = O(tm) (4.50)

As we have seen above, designing an exponential integrator requires
the choice of many quantities. In particular, the choice of step-length
is inherently very difficult. We have the trade-offs in order obtain fast
convergence and accurate results. We want

• small h, because it leads to fast convergence in the Krylov method
as is illustrated in (4.50);

• small h, because it leads to smaller discretization error as the dis-
cretization error (per step) is quadratic in h; but

• large h, because then we can complete the integration in N ∼ 1/h
steps.

The typical approach to balance these quantities often involves problem-
specific a posteriori error analysis of the Krylov method as well as the
integrator.

x4.5 Further reading and literature

The most complete source of information for matrix functions is the
works of Nick Higham, in particular his monograph [5] but also sum-
mary papers such as [6]. The work of Horn and Johnson [9] contains
a thorough and more theoretical approach to matrix functions. Ma-
trix functions also appear in concise formats in standard literature in
matrix computations [4, 1]. The presentation of the matrix square root
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in Secion 4.3.2 was inspired by sections from [1] and [5], whereas the
scaling-and-squaring in Section 4.3.1 was based on [4]. Further in-
formation about Section 4.4.3 can be found in [8, 7] and references
therein. The topic of matrix functions is a very active topic. There is
active research on rational Krylov methods for matrix functions, con-
ditioning numbers and development of new methods for other matrix
functions. Considerable research is carried out on convergence of itera-
tive methods for matrix functions and also specialized preconditioning
techniques.

x4.6 Appendix - Omitted proofs

Proof of Theorem 4.1.5. First note that all three definitions satisfy (4.6)
and (4.7). If we select X and B as the Jordan canonical form of A, we
have

fT(A) = fT(XBX−1) = X diag( fT(J1), . . . , fT(Ji))X−1

f J(A) = f J(XBX−1) = X diag( f J(J1), . . . , f J(Ji))X−1

fC(A) = fC(XBX−1) = X diag( fC(J1), . . . , fC(Ji))X−1.

Hence, the definitions are equivalent if and only if fT(J) = f J(J) =
fC(J) for any Jordan block J = Ji. Therefore, it is sufficient to prove
equivalence for an arbitrary Jordan block J ∈ Cm×m.

Definition 4.1.1⇔ Definition 4.1.3. We first show the result for mono-
mials pk(z) ∶= zk. By induction we see that p(`)k (z) = `p(`−1)

k−1 (z) +
zp(`)k−1(z) for any ` and k. By again using induction we have that

(J − µI)k = pk(J − µI) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pk(λ − µ) p′k(λ−µ)
1! ⋯ p(m−1)

k (λ−µ)
(m−1)!

⋱ ⋱ ⋮
⋱ p′k(λ−µ)

1!
pk(λ − µ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.51)
The function is analytic, so we can directly differentiate the Taylor
expansion j times

f (j)(λ) =
∞
∑
`=0

f (`)(µ)
`!

p(j)` (λ − µ). (4.52)

We now combine (4.51) and (4.52) in the Taylor definition (4.4) to
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establish the conclusion

fT(J) =
∞
∑
`=0

f (`)(µ)
`!

(J − µI)` =

∞
∑
`=0

f (`)(µ)
`!

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p`(λ − µ) p′`(λ−µ)
1! ⋯ p(m−1)

`
(λ−µ)

(m−1)!
⋱ ⋱ ⋮

⋱ p′`(λ−µ)
1!

p`(λ − µ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (λ) f ′(λ)
1! ⋯ f (m−1)(λ)

(m−1)!
⋱ ⋱ ⋮

⋱ f ′(λ)
1!

f (λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The implication holds in both direction since the definitions are
unique.

Definition 4.1.3⇔ Definition 4.1.4. It is easy to verify that that the
expression involving an inverse in the Cauchy integral formula is
explicitly

(zI − J)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/(z − λ) 1/(z − λ)2 ⋯ 1/(z − λ)m

⋱ ⋱ ⋮
⋱ 1/(z − λ)2

1/(z − λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.53)

Now let
F ∶= 1

2iπ ∮Γ
f (z)(zI − J)−1 dz.

From the (scalar) Cauchy integral formula and (4.53) we have

Fi,j =
1

2iπ ∮Γ

f (z)
(z − λ)j dz =

f (j−i)(λ)
(j − i)!

, i = 1, . . . , m, j = i, . . . , m,

which coincides with the JCF-definition (4.11)
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