QR-method lecture 2

SF2524 - Matrix Computations for Large-scale Systems

Outline:

- Decompositions
 - Jordan form
 - Schur decomposition
 - QR-factorization
- Basic QR-method
- Improvement 1: Two-phase approach
 - Hessenberg reduction
 - Hessenberg QR-method
- Improvement 2: Acceleration with shifts
- Convergence theory

Improvement 1: Two-phase approach

We will separate the computation into two phases:

Phases:

- Phase 1: Reduce the matrix to a Hessenberg with similarity transformations (Section 2.2.1 in lecture notes)
- Phase 2: Specialize the QR-method to Hessenberg matrices (Section 2.2.2 in lecture notes)

Phase 1: Hessenberg reduction

Idea for Hessenberg reduction

Compute unitary P and Hessenberg matrix H such that

$$A = PHP^*$$

Unlike the Schur factorization, this can be computed with a finite number of operations.

Key method: Householder reflectors

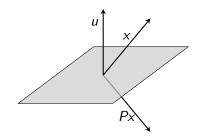
Phase 1: Hessenberg reduction

Definition

A matrix $P \in \mathbb{C}^{m \times m}$ of the form

$$P = I - 2uu^*$$
 where $u \in \mathbb{C}^m$ and $||u|| = 1$

is called a Householder reflector.



Properties

- $P^* = P^{-1} = P$
- $Pz = z 2u(u^*z)$ can be computed with O(m) operations.
- · · · (show on white board)

Householder reflectors satisfying $Px = \alpha e_1$

Problem

Given a vector x compute a Householder reflector such that

$$Px = \alpha e_1$$
.

Solution (Lemma 2.2.3)

Let $\rho = \operatorname{sign}(x_1)$,

$$z := x - \rho ||x|| e_1 = \begin{bmatrix} x_1 - \rho ||x|| \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

and

$$u = z/||z||$$
.

Then, $P = I - 2uu^*$ is a Householder reflector that satisfies $Px = \alpha e_1$.

* Matlab demo showing Householder reflectors *

We will be able to construct m-2 householder reflectors that bring the matrix to Hessenberg form.

Elimination for first column

$$P_1 := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \end{bmatrix} = \begin{bmatrix} 1 & 0^T \\ 0 & I - 2u_1u_1^T \end{bmatrix}.$$

Use Lemma 2.2.1 with $x^T = [a_{21}, \dots, a_{n1}]$ to select u_1 such that

In order to have a similarity transformation mult from right:

$$P_1AP_1^{-1} = P_1AP_1 = \text{same structure as } P_1A.$$

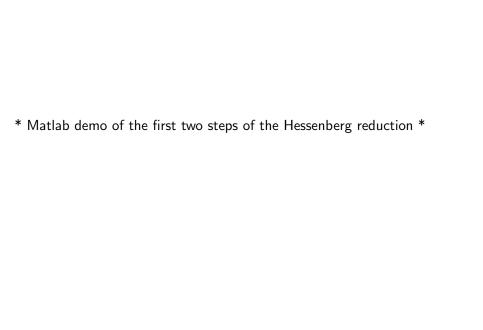
8 / 30

Elimination for second column

Repeat the process with:

$$P_2 = \begin{bmatrix} 1 & 0 & 0^T \\ 0 & 1 & 0^T \\ 0 & 0 & I - 2u_2u_2^T \end{bmatrix}$$

where u_2 is constructed from the n-2 last elements of the second column of $P_1AP_1^*$.



The iteration can be implemented without explicit use of the P matrices.

Algorithm 2 Reduction to Hessenberg form

Input: A matrix $A \in \mathbb{C}^{n \times n}$

Output: A Hessenberg matrix H such that $H = U^*AU$.

for k = 1, ..., n - 2 do

Compute u_k using (2.4) where $x^T = [a_{k+1,k}, \dots, a_{n,k}]$

Compute $P_k A$: $A_{k+1:n,k:n} := A_{k+1:n,k:n} - 2u_k(u_k^* A_{k+1:n,k:n})$

Compute $P_k A P_k^*$: $A_{1:n,k+1:n} := A_{1:n,k+1:n} - 2(A_{1:n,k+1:n} u_k) u_k^*$

end for

Let H be the Hessenberg part of A.

^{*} show it in matlab *