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Reading material

Lecture notes online “Numerical methods for matrix functions”

(Further reading: Nicholas Higham - Functions of Matrices)

(Further reading: Golub and Van Loan - Matrix computations)

Agenda Block D Matrix functions

Lecture 13: Defintions

Lecture 13: General methods

Lecture 14: Matrix exponential (underlying expm(A) in matlab)

Lecture 14: Matrix square root, matrix sign function

Lecture 15: Krylov methods for f (A)b

Lecture 15: Exponential integrators
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Functions of matrices

Matrix functions (or functions of matrices) will in this block refer to a
certain class of functions

f : Cn×n → Cn×n

that are consistent extensions of scalar functions.

Simplest examples

If f (t) = b0 + b1t + · · ·+ bmtm it is natural to define

f (A) = b0I + b1A + · · ·+ bmAm.

If f (t) = α+t
β+t it is natural to define

f (A) = (αI + A)−1(βI + A) = (βI + A)(αI + A)−1.

Not matrix functions: f (A) = det(A), f (A) = ‖A‖
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Definitions

Definition encountered in earlier courses (maybe)

Consider an analytic function f : C→ C, with a Taylor expansion with
expansion point µ = 0

f (z) = f (0) +
f ′(0)

1!
z + · · · .

The matrix function f (A) is defined as

f (A) :=
∞∑
i=0

f (i)(0)

i !
Ai = f (0)I +

f ′(0)

1!
A + · · · .

In this course we are more careful. Essentially equivalent definitions:

Taylor series: Definition 4.1.1

Jordan based: Definition 4.1.3

Cauchy integral: Definition 4.1.4

Numerical methods for matrix functions 4 / 26



Applications

The most well-known non-trivial matrix function

Consider the linear autonomous ODE

y ′(t) = Ay(t), y(0) = y0

The matrix exponential (expm(A) in matlab) is the function that satisfies

y(t) = exp(tA)y0

More generally, the solution to

y ′(t) = Ay(t) + f (t)

satisfies

y(t) = exp(tA)y0 +

∫ t

0
exp(A(t − s))f (s) ds

For some problems much better than traditional time-stepping methods.
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Trigonometric matrix functions and square roots

Suppose y(t) ∈ Rn satisfies

y ′′(x) + Au(x) = 0 y(0) = y0, y ′(0) = y ′0.

The solution is explicitly given by

y(t) = cos(
√

At)y0 + (
√

A)−1 sin(
√

(A)t)y ′0.
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Matrix logarithm in Markov chains

The transition probability matrix P(t) is related to the transition intensity
matrix Q with

P(t) = exp(Qt)

were Q satisfies certain properties. Inverse problem: Given P(1) is there Q
such that the properties are satisfied. Method: Compute

Q = log(P(0))

and check properties.
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Further applications in

Solving the Riccati equation (in control theory)

Study of stability of time-delay systems

Orthogonal procrustes problems

Geometric mean

Numerical methods for differential equations

· · ·

See youtube video from Gene Golub summer school:
https://www.youtube.com/watch?v=UXWMYr0LQAk
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Definitions of matrix functions
PDF lecture notes section 4.1
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Polynomials

If p(z) = a0 + a1z + · · · apzp, then the matrix function extension is

p(A) = a0I + a1A + · · · apAp

Taylor expansion of scalar function f (z) with expansion point µ

f (z) =
∞∑
i=0

f (i)(µ)

i !
(z − µ)i .

Definition (Taylor definition)

The Taylor definition with expansion point µ ∈ C of the matrix function
associated with f (z) is given by

f (A) =
∞∑
i=0

f (i)(µ)

i !
(A− µI )i .
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When is the infinite sum

f (A) =
∞∑
i=0

f (i)(µ)

i !
(A− µI )i . (1)

finite?

Theorem (Convergence of Taylor definition)

Suppose f (z) is analytic in D̄(µ, r) and suppose r > ‖A− µI‖. Let f (A)
be (1) and

γ :=
‖A− µI‖

r
< 1.

Then, there exists a constant C > 0 independent of N such that

‖f (A)−
N∑
i=0

f (i)(µ)

i !
(A− µI )i‖ ≤ CγN → 0 as N →∞.

Consequence: f (A) finite if f entire function Proof on black board
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Simple properties:

f (z) = g(z) + h(z) ⇒ f (A) = g(A) + h(A)

f (z) = g(z)h(z) ⇒ f (A) = g(A)h(A) = h(A)g(A)

f (V−1XV ) = V−1f (X )V (?)

f (

t1

. . .

tn

) =

f (t1)
. . .

f (tn)


f (

t1 × ×
. . . ×

tn

) =

f (t1) × ×
. . . ×

f (tn)


f (

[
A 0
0 B

]
)

[
f (A) 0

0 f (B)

]
(??)

Note g(A)g(B) 6= g(B)g(A) unless AB = BA
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Jordan form definition
Use (?) with Jordan decomposition A = VJV−1:

f (A) = f (VJV−1) = Vf (J)V−1

Use (??):

f (J) = f (

J1

. . .

Jq

) =

f (J1)
. . .

f (Jq)


What is the matrix function of a Jordan block?

Ji =


λ 1

. . .
. . .
. . . 1

λ


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Example: f (J)

Example in Matlab:

A =

s 1 0
s 1

s


and p(z) = z4.For this case we have

p(J) =

p(λ) p′(λ) 1
2 p′′(λ)

0 p(λ) p′(λ)
0 0 p(λ)

 .
Can be formalized (proof in PDF lecture notes)...
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Definition (Jordan canonical form (JCF) definition)

Suppose A ∈ Cn×n and let X and J1, . . . , Jq be the JCF. The
JCF-definition of the matrix function f (A) is given by

f (A) := X diag(F1, . . . ,Fq)X−1, (2)

where

Fi = f (Ji ) :=


f (λi )

f ′(λi )
1! · · · f (ni−1)(λi )

(ni−1)!
. . .

. . .
...

. . . f ′(λi )
1!

f (λi )

 ∈ Cni×ni . (3)

Show specialization when eigenvalues distinct
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Cauchy integral definition

From complex analysis: Cauchy integral formula

f (x) =
1

2iπ

∮
Γ

f (z)

z − x
dz .

where Γ encircles x counter-clockwise. Replace x with A:

Definition (Cauchy integral definition)

Suppose f is analytic inside and on a simple, closed, piecewise-smooth
curve Γ, which encloses the eigenvalues of A once counter-clockwise.
The Cauchy integral definition of matrix functions is given by

f (A) :=
1

2iπ

∮
Γ

f (z)(zI − A)−1 dz .

* example in lecture notes *
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Equivalence of definitions
We have learned about

Definition 1: Taylor definition

Definition 2: Jordan form definition

Definition 3: Cauchy integral definition

Slightly different different definition domains.

Theorem (Equivalence of the matrix function definitions)

Suppose f is an entire function and suppose A ∈ Cn×n. Then, the matrix
function definitions are equivalent.

Which definition valid for

f (x) =
√

x with A =

[
0 1
0 4

]
?

and

f (x) =
√

x with A =

[
3 1
0 4

]
?
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General methods
PDF lecture notes section 4.2
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General methods for matrix functions:

Today: Truncated Taylor series (4.2.1)

Today: Eigenvalue-eigenvector approach (4.2.2)

Today: Schur-Parlett method (4.2.3)

Lecture 15: Krylov methods for f (A)b (4.4)
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Truncated Taylor series (naive approach)

First approach based on truncting Taylor series:

f (A) ≈ FN =
N∑
i=0

f (i)(µ)

i !
(A− µI )i

Properties

Can be very slow if Taylor series converges slowly

We need N − 1 matrix-matrix multiplications. Complexity

O(Nn3)

We need access to the derivatives

The truncated Taylor series is mostly for theoretical purposes.
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Eigenvalue-eigenvector approach
If we have distinct eigenvalues or symmetric matrix:

f (A) = V

f (λ1)
. . .

f (λn)

V−1

where V = [v1, . . . , vn] are the eigenvectors.

Main properties

Requires computation of eigenvalues and eigenvectors: Complexity
essentially O(n3)

Requires only the function value in the eigenvalues

Can be numerically unstable

If A is symmetric V−1 = V T .

Conclusion: Can be used for numerical computations if reliability is not
important.
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Schur-Parlett method

We know how to compute a Schur factorization

A = QTQ∗

where Q orthogonal and T upper triangular

f (A) = f (QTQ∗) = Qf (T )Q∗.

Schur-Parlett method:

Compute a Schur factorization Q,T

Compute f (T ) where T triangular

Compute f (A) = Qf (T )Q∗.

What is f (T ) for a triangular matrix?
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f (T ) where T triangular

Note: f (T ) commutes with T :

f (T )T = Tf (T ).

* On black board: two-by-two example. Generalization derivation *
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Theorem (Computation of one element of f (T ))

Suppose T ∈ Cn×n is an upper triangular matrix with distinct eigenvalues.
Then, for any i and any j > i ,

fij =
s

tjj − tii

where

s = tij(fjj − fii ) +

j−1∑
k=i+1

tik fkj − fiktkj .

F :

j
↓

+ + + + + � � �
0 + + + + + � �

i → 0 0 + + + + fij �
0 0 0 + + + + �
0 0 0 0 + + + +
0 0 0 0 0 + + +
0 0 0 0 0 0 + +
0 0 0 0 0 0 0 +

T :

j
↓

+ + + + + + + +
0 + + + + + + +

i → 0 0 + + + + + +
0 0 0 + + + + +
0 0 0 0 + + + +
0 0 0 0 0 + + +
0 0 0 0 0 0 + +
0 0 0 0 0 0 0 +
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Repeat sub-column by sub-column.
* On blackboard *

* Matlab simulation *
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Main properties Schur-Parlett (simplified)

Requires the computation of a Schur-decomposition (O(n3)) which is
often the dominating computational cost.

The only usage of f : f (λi ), i = 1, . . . , n

Only works when eigenvalues distinct

Numerical cancellation can occur when eigenvalues close: Can
repaired with the full version of Schur-Parlett by using f (i)(z).
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