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Improvement 2: Acceleration with shifts (Section 2.3)
Shifted QR-method
One step of shifted QR-method: Let Hy = H

H—pul = QR
H = RQ+ul

and Hyyq = H.

Note:
Hipi=H=RQ+pul = QT(H—pu))Q+ ul = QTHkQ

= One step of shifted QR-method is a similarity transformation, with a
different @ matrix.

* matlab demo: gr_shifted.m *
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|dealized situation: Let p = A\(H)

Suppose p is an eigenvalue:
= H — pul is a singular Hessenberg matrix.
QR-factorization of singular Hessenberg matrices (Lemma 2.3.1)

The R-matrix in the QR-decomposition of a singular unreduced
Hessenberg matrix has the structure

X X
X

X X X
X X X X
o X X X X

v

* Matlab demo: Show QR-factorization of singular Hessenberg matrix in matlab *
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Shifted QR for exact shift: =\

If w = X is an eigenvalue of H, then H — u/ is singular. Suppose Q, R a
QR-factorization of a Hessenberg matrix and

X X X
X X

R: X

X X X X
o X X X X

Then, * Prove on blackboard *

X

X
X X X X
X X X X
o X X X X

and

X X
X X X X
X X X X

H=RQ+ )\ =

> X X X X

= ) is an eigenvalue of H.
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More precisely:

Lemma (Lemma 2.3.2)

Suppose \ is an eigenvalue of the Hessenberg matrix H. Let H be the
result of one shifted QR-step. Then,
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Select the shift

How to select the shifts?
@ Shifted QR-method with 4z = A computes an eigenvalue in one step.

@ The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate
eigenvalue. Rayleigh shifts:

W= rmm.

Explanation of terminology

@ The QR-method can be interpreted as equivalent to variant of Power
Method applied to A. (Will be shown later)

@ The QR-method can be interpreted as equivalent to variant of Power
Method applied to A~1. (Proof sketched in TB Chapter 29) =
Rayleigh shifts can be interpreted as Rayleigh quotient iteration.
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One final trick: Deflation

Deflation: A technique to avoid computing for already converged
eigenvalues

QR-step on reduced Hessenberg matrix

_ (Ho Hi
M= )
where Hj is upper triangularand let
_ (Hy Fy
= (f:/z /:/3) ’
be the result of one (shifted) QR-step. Then, Ho = 0, H3 = Hs and Hy is
the result of one (shifted) QR-step applied to Hp. * show proof *

Suppose

v

= We can reduce the active matrix when an eigenvalue is converged.

This is called deflation.
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Rayleigh shifts can be combined with deflation =

Algorithm 4 Hessenberg QR algorithm with Rayleigh quotient shift
and deflation
Input: A Hessenberg matrix A e C"*"
Set H® = A
form=n,...,2do
k=0
repeat
k=k+1
o = i)
Hi 1 -0l = QiRy
Hj = RpQy + o3 1
until |h'(ﬂ'?ﬂ_1\ is sufficiently small
Save h,(,t 2,( as a converged eigenvalue

Set H - Hg:k()m-l),l:(m-l) eClmDx(mD)

end for

* show Hessenberg qr with shifts in matlab *
Not proven: Hessenberg QR with givens can be combined with shifts
* http://www.youtube.com/watch?v=qmngxzsWWsNc *
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Convergence theory - (Lecture notes PDF + TB Ch. 28)

Didactic simplification for convergence of QR-method: Assume A= AT.

Convergence characterization

(1) Artificial algorithm: USI - Unnormalized Simultaneous Iteration
2

(2) Show convergence properties of USI
(3) Artificial algorithm: NSI - Normalized Simultaneous Iteration
(4)

4) Show: US| < NSI & QR-method
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Definition: Unnormalized simultaneous iteration (USI)

A generalization of power method with m vectors “simultaneously
vO =9, v ermm,

Define
vk = Aky(O),

A QR-factorization generalizes the normalization step:

AR Rk — (k).

* show in matlab usi *
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Convergence of USI
Assumptions:

@ (ASM1) Let eigenvalues ordered and distinct in modulus

[Ad1] > - > |Anl.

o (ASM2) Assume leading principal submatrices of X7 V(%) are
nonsingular, where X are the eigenvectors.
Theorem (PDF Lecture notes Thm 2.4.1 (essentially TB Thm 28.1))

Suppose ASM1 is satisfied for A € R"*". Let the columns of X be
eigenvectors of A Let V(©) ¢ R"™*" pe ASM2 is satisfied Let
V() .= AV(K) | be the iterates of USI. Then, a QR-factorizations of

V(K = QK R(K) satisfies
1Q™ — X| = o(ck)

where C = maxy=1, -1 |Ae|/|Aes1]-

G ra bk Sk
Show-proof-==matlab-demo-on-USt
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Normalized Simultaneous Iteration (NSI)

Variants of the power method. Equivalent:
. Ak

(i) vi = mara
.. _ Aveg

(i) vie = v

USI is a generlization of (i).

NSl is a generalization of (ii).

Algorithm: (Normalized) Simultaneous Iteration

o Input (AQ(O) c RMXxm

@ Fork=1,...,
Set Z = AQx! -
Compute QR-factorization QWR*) = 7
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USI and NSI are equivalent. More precisely:

Equivalence USI and NSI (TB Thm 28.2)

Suppose assumptions above are satisfied. If USI and NSI are started with
the same vector they will generate the same sequence of matrices Q¥ and

Rk

* show usi_nsi_equiv.m *
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Simultaneous iteration and QR-method

We will establish:

basic QR-method < Simultaneous iteration with (A{)(O) =/ e R™",

Simultaneous iteration satisfies
0o QU =
o Z, = AQ\Y)
o 7 = QE)R(k)

o AK) = (Q")TAQW)

Define: RK) .= R(K) ... R(1)

QR-method satisfies
o A= A
o Al-1) — QKR(K)
o AK) — R(K Q)
o QW .— Q... Q)

Essentially: The above equations generate the same sequence of matrices
More precisely . . .
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TB Theorem 28.3:

Theorem (Equivalence simultaneous iteration and QR-method )

The above processes generate identical sequences of vectors. In particular,
Ak = QU R(K)

and

Ak — (Q(k))TA(Q(")).

Beware: QR-factorization is not unique and equivalence only holds with
one QR-factorization.
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Important property:
Ak — (Q(k))TAQ(k)

Consequence

AR = QT Ak
(X(I+ Ak)TAX(I + A)
(X(I+ A) XN + Ag)
(I + A TXTXA( + Ay)
(I 4+ D) TA(+ Ag)
A+ AN+ AA, + A3
= A+ O(|Akl])

Hence, A) will approach a diagonal matrix at speed Ck.
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* Matlab demos *

qronsiequiv.m
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