QR-method lecture 4

SF2524 - Matrix Computations for Large-scale Systems

Outline:

- Basic QR-method
- Improvement 1: Two-phase approach
- Hessenberg reduction
- Hessenberg QR-method
- Improvement 2: Acceleration with shifts
- Convergence theory

Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method

One step of shifted QR-method: Let $H_{k}=H$

$$
\begin{aligned}
H-\mu I & =Q R \\
\bar{H} & =R Q+\mu I
\end{aligned}
$$

and $H_{k+1}:=\bar{H}$.
Note:

$$
\left.H_{k+1}=\bar{H}=R Q+\mu I=Q^{T}(H-\mu I)\right) Q+\mu I=Q^{T} H_{k} Q
$$

\Rightarrow One step of shifted QR-method is a similarity transformation, with a different Q matrix.

Idealized situation: Let $\mu=\lambda(H)$

Suppose μ is an eigenvalue:
$\Rightarrow H-\mu I$ is a singular Hessenberg matrix.

QR-factorization of singular Hessenberg matrices (Lemma 2.3.1)

The R-matrix in the QR-decomposition of a singular unreduced Hessenberg matrix has the structure

$$
R=\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & & \times & \times \\
& & & & 0
\end{array}\right] .
$$

* Matlab demo: Show QR-factorization of singular Hessenberg matrix in matlab *

Shifted QR for exact shift: $\mu=\lambda$

If $\mu=\lambda$ is an eigenvalue of H, then $H-\mu$ I is singular. Suppose Q, R a QR-factorization of a Hessenberg matrix and

$$
R=\left[\begin{array}{lllll}
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & & & \times \\
\times
\end{array}\right] .
$$

Then,

$$
R Q=\left[\begin{array}{lllll}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & & & 0
\end{array}\right]
$$

and

$$
\bar{H}=R Q+\lambda I=\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
&
\end{array}\right] .
$$

$\Rightarrow \lambda$ is an eigenvalue of \bar{H}.

More precisely:
Lemma (Lemma 2.3.2)
Suppose λ is an eigenvalue of the Hessenberg matrix H. Let \bar{H} be the result of one shifted $Q R$-step. Then,

$$
\begin{aligned}
\bar{h}_{n, n-1} & =0 \\
\bar{h}_{n, n} & =\lambda .
\end{aligned}
$$

Select the shift

How to select the shifts?

- Shifted QR-method with $\mu=\lambda$ computes an eigenvalue in one step.
- The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximate eigenvalue. Rayleigh shifts:

$$
\mu:=r_{m, m} .
$$

Explanation of terminology

- The QR-method can be interpreted as equivalent to variant of Power Method applied to A. (Will be shown later)
- The QR-method can be interpreted as equivalent to variant of Power Method applied to A^{-1}. (Proof sketched in TB Chapter 29) \Rightarrow Rayleigh shifts can be interpreted as Rayleigh quotient iteration.

One final trick: Deflation

Deflation: A technique to avoid computing for already converged eigenvalues

QR-step on reduced Hessenberg matrix

Suppose

$$
H=\left(\begin{array}{cc}
H_{0} & H_{1} \\
0 & H_{3}
\end{array}\right)
$$

where H_{3} is upper triangularand let

$$
\bar{H}=\left(\begin{array}{ll}
\bar{H}_{0} & \bar{H}_{1} \\
\bar{H}_{2} & \bar{H}_{3}
\end{array}\right),
$$

be the result of one (shifted) QR-step. Then, $\bar{H}_{2}=0, \bar{H}_{3}=H_{3}$ and \bar{H}_{0} is the result of one (shifted) QR-step applied to H_{0}.
\Rightarrow We can reduce the active matrix when an eigenvalue is converged.

This is called deflation.

Rayleigh shifts can be combined with deflation \Rightarrow

```
Algorithm 4 Hessenberg QR algorithm with Rayleigh quotient shift
and deflation
Input: A Hessenberg matrix \(A \in \mathbb{C}^{n \times n}\)
    Set \(H^{(0)}:=A\)
    for \(m=n, \ldots, 2\) do
        \(k=0\)
        repeat
            \(k=k+1\)
            \(\sigma_{k}=h_{m, m}^{(k-1)}\)
            \(H_{k-1}-\sigma_{k} I=: Q_{k} R_{k}\)
            \(H_{k}:=R_{k} Q_{k}+\sigma_{k} I\)
        until \(\left|h_{m, m-1}^{(k)}\right|\) is sufficiently small
        Save \(h_{m, m}^{(k)}\) as a converged eigenvalue
        Set \(H^{(0)}=H_{1:(m-1), 1:(m-1)}^{(k)} \in \mathrm{C}^{(m-1) \times(m-1)}\)
    end for
```

* show Hessenberg qr with shifts in matlab * Not proven: Hessenberg QR with givens can be combined with shifts
* http://www. youtube.com/watch?v=qmgxzsWWsNc *

Outline:

- Basic QR-method
- Improvement 1: Two-phase approach
- Hessenberg reduction
- Hessenberg QR-method
- Improvement 2: Acceleration with shifts
- Convergence theory

Outline:

- Basic QR-method
- Improvement 1: Two-phase approach
- Hessenberg reduction
- Hessenberg QR-method
- Improvement 2: Acceleration with shifts
- Convergence theory

Convergence theory - (Lecture notes PDF + TB Ch. 28)

Didactic simplification for convergence of QR-method: Assume $A=A^{T}$.
Convergence characterization
(1) Artificial algorithm: USI - Unnormalized Simultaneous Iteration
(2) Show convergence properties of USI
(3) Artificial algorithm: NSI - Normalized Simultaneous Iteration
(4) Show: USI \Leftrightarrow NSI \Leftrightarrow QR-method

Definition: Unnormalized simultaneous iteration (USI)

A generalization of power method with m vectors "simultaneously"

$$
V^{(0)}=\left[v_{1}^{(0)}, \ldots, v_{m}^{(0)}\right] \in \mathbb{R}^{n \times m}
$$

Define

$$
V^{(k)}:=A^{k} V^{(0)} .
$$

A QR-factorization generalizes the normalization step:

$$
\hat{Q}^{(k)} \hat{R}^{(k)}=V^{(k)} .
$$

Convergence of USI

Assumptions:

- (ASM1) Let eigenvalues ordered and distinct in modulus

$$
\left|\lambda_{1}\right|>\cdots>\left|\lambda_{n}\right| .
$$

- (ASM2) Assume leading principal submatrices of $X^{\top} V^{(0)}$ are nonsingular, where X are the eigenvectors.

Theorem (PDF Lecture notes Thm 2.4.1 (essentially TB Thm 28.1))

Suppose ASM1 is satisfied for $A \in \mathbb{R}^{n \times n}$. Let the columns of X be eigenvectors of A Let $V^{(0)} \in \mathbb{R}^{n \times n}$ be ASM2 is satisfied Let $V^{(k)}:=A V^{(k)}$, be the iterates of USI. Then, a $Q R$-factorizations of $V^{(k)}=Q^{(k)} R^{(k)}$ satisfies

$$
\left\|Q^{(k)}-X\right\|=\mathcal{O}\left(C^{k}\right)
$$

where $C=\max _{\ell=1, \ldots, n-1}\left|\lambda_{\ell}\right| /\left|\lambda_{\ell+1}\right|$.

Normalized Simultaneous Iteration (NSI)

Variants of the power method. Equivalent:
(i) $v_{k}=\frac{A^{k} v_{0}}{\left\|A^{k} v_{0}\right\|}$
(ii) $v_{k}=\frac{A v_{k-1}}{\left\|A v_{k-1}\right\|}$

USI is a generlization of (i).
NSI is a generalization of (ii).
Algorithm: (Normalized) Simultaneous Iteration

- Input $\hat{Q}^{(0)} \in \mathbb{R}^{n \times m}$
- For $k=1, \ldots$,

Set $Z=A \hat{Q}^{k-1}$
Compute QR-factorization $\hat{Q}^{(k)} \hat{R}^{(k)}=Z$

USI and NSI are equivalent. More precisely:
Equivalence USI and NSI (TB Thm 28.2)
Suppose assumptions above are satisfied. If USI and NSI are started with the same vector they will generate the same sequence of matrices \hat{Q}^{k} and \hat{R}^{k}.

Simultaneous iteration and QR-method

We will establish:
basic QR-method \Leftrightarrow Simultaneous iteration with $\hat{Q}^{(0)}=I \in \mathbb{R}^{n \times n}$.

Simultaneous iteration satisfies

- $\underline{Q}^{(0)}=I$
- $Z_{k}=A \underline{Q}^{(k-1)}$
- $Z_{k}=\underline{Q}^{(k)} R^{(k)}$
- $A^{(k)}:=\left(\underline{Q}^{(k)}\right)^{T} A\left(\underline{Q}^{(k)}\right)$

QR-method satisfies

- $A^{(0)}=A$
- $A^{(k-1)}=Q^{(k)} R^{(k)}$
- $A^{(k)}=R^{(k)} Q^{(k)}$
- $\underline{Q}^{(k)}:=Q^{(1)} \cdots Q^{(k)}$

Define: $\underline{R}^{(k)}:=R^{(k)} \cdots R^{(1)}$

Essentially: The above equations generate the same sequence of matrices More precisely ...

TB Theorem 28.3:
Theorem (Equivalence simultaneous iteration and QR-method)
The above processes generate identical sequences of vectors. In particular,

$$
A^{k}=\underline{Q}^{(k)} \underline{R}^{(k)}
$$

and

$$
A^{(k)}=\left(\underline{Q}^{(k)}\right)^{T} A\left(\underline{Q}^{(k)}\right)
$$

Beware: QR-factorization is not unique and equivalence only holds with one QR-factorization.

Important property:

$$
A^{(k)}=\left(\underline{Q}^{(k)}\right)^{T} A \underline{Q}^{(k)}
$$

Consequence

$$
\begin{aligned}
A^{(k)} & =Q^{(k) T} A Q^{(k)} \\
& =\left(X\left(I+\Delta_{k}\right)\right)^{T} A X\left(I+\Delta_{k}\right) \\
& =\left(X\left(I+\Delta_{k}\right)\right)^{T} X \Lambda\left(I+\Delta_{k}\right) \\
& =\left(I+\Delta_{k}\right)^{T} X^{T} X \Lambda\left(I+\Delta_{k}\right) \\
& =\left(I+\Delta_{k}\right)^{T} \Lambda\left(I+\Delta_{k}\right) \\
& =\Lambda+\Delta_{k}^{T} \Lambda+\Lambda \Delta_{k}+\Delta_{k}^{2} \\
& =\Lambda+O\left(\left\|\Delta_{k}\right\|\right)
\end{aligned}
$$

Hence, $A^{(k)}$ will approach a diagonal matrix at speed C^{k}.

* Matlab demos *

