Övning 2

September 18, 2018

Problem 1

Perform one step of Newton's method using an initial guess of $(0,0)$ for the system of equations: $\exp (x+y)+y^{2}-1.1=0, \quad \exp (x-y)-x-2 y-0.94=0$.

Problem 2 (ENM)

8.3 Råttor har gnagt på de gamla pyramiderna, så att de numera är rejält stympade. Volymen V hos en sådan stympad pyramid ges av formeln

$$
V=\frac{h}{3}\left(B_{1}+\sqrt{B_{1} B_{2}}+B_{2}\right)
$$

där h är höjden, B_{1} är bottenytan och B_{2} den parallella övre ytan. Efter att råttorna jagats bort har följande värden uppmätts: $h=6 \pm 0.3, B_{1}=8 \pm 0.2$ och $B_{2}=3 \pm 0.1$ (angivna i pe - pyramidabla enheten). Bestäm volymen med felgränser.

Problem 3

1.2 Ekvationen $\log (x)-x / 50=0$ löstes med Newtons metod och avbrottskriteriet $\mid \log \left(x_{n}\right)-$ $x_{n} / 50 \mid<10^{-10}$. Resultatet blev $x_{n}=282.1158987499664$. Ge en övre gräns för absolutfelet i x_{n} (jämfört med den exakta roten). Motivera svaret.

Problem 4 (Sauer 2.2.8)

8. (a) Find the condition number of the coefficient matrix in the system
$\left[\begin{array}{ll}1 & 1 \\ 1+\delta & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}2 \\ 2+\delta\end{array}\right]$ as a function of $\delta>0$. (b) Find the error magnification factor for the approximate root $x_{a}=[-1,3+\delta]$.

Problem 5 (Sauer 2.1.7)

7. Assume that your computer can solve 1000 problems of type $U x=c$, where U is an upper-triangular 500×500 matrix, per second. Estimate how long it will take to solve a full 5000×5000 matrix problem $A x=b$. Answer in minutes and seconds.
