Övning 1

September 14, 2018

Exercise 1(Sauer 1.1.5). Consider the equation $x^{4}=x^{3}+10$.
(a) Find an interval $[a, b]$ of length two inside which the equation has a solution.
(b) Starting with $[a, b]$, how many steps of Bisection method are required to calculate the solution within 10^{-10} ? Answer with an integer.

Exercise 2(Sauer 1.1.6). Suppose that the Bisection method with starting interval $[-2,1]$ is used to find a root of the function $f(x)=1 / x$. Does the method converge to a real number? Is it the root?

Exercise 3(Sauer 1.2.15). Which of the following FPIs converge to the $\sqrt{5}$?
(a) $x \rightarrow \frac{4}{5} x+\frac{1}{x}$ (b) $x \rightarrow \frac{x}{2}+\frac{5}{2 x}$ (c) $x \rightarrow \frac{x+5}{x+1}$

Exercise 4(Sauer 1.4.2(a)). Apply two steps of Newton's method with an initial guess $x_{0}=1$ to the equation $x^{3}+x^{2}-1=0$. Write a MATLAB script on paper to implement Newton's method to find the root within ten digits of accuracy.

Exercise 5(Sauer 1.4.11). Use Newton's method to produce a quadratically convergent method for calculating the n -th root of a positive number A, where n is a positive integer. Prove quadratic convergence.

