EMI Seminar 2017

Stockphola

KTH 21 February By Thomas Ginell

stockphol

ANALOG EXCELLENCE

INNOVATION LED RECOVERY

- Basic switch mode power design
- Circuit EMI, ripple, noise, component behavior
- Basic electromagnetics

Electromagnetic Interference

Hardware

Needs

POWER

And everything has to fit in here !

Detailed Voltage Rail Map

What Rails should be kept separately?

Which Part to Choose?

Linear Regulator

- Easy to design and use
- No magnetics
- Low noise
- Low efficiency

Switching Regulator

- High efficiency
- Small no heat sinks!
- Switching noise
- More complicated
 How much more

Levels of integration

Controller

- Output and input filter
 - Capacitor size and ratings
- Inductor dimensioning
 - Saturation current
 - Core losses
 - Copper losses
- Switches dimensioning
 - Voltage rating
 - Current rating
 - Rdson vs Qg
- Layout
 - Complex !

Monolithic

- Output and input filter
 - Capacitor size and ratings
- Inductor dimensioning
 - Saturation current
 - Core losses
 - DC losses
- Layout
 - Medium complexity !

µModule

- Pick the part
 - Fits spec yes/no?
- Layout
 - Piece of cake !

What frequency should I choose ?

- What is a switch mode regulator?
- Lets have a look at a step down converter (Buck)

Buck Converter Step down

From EMI point off view:

DC currents, no worries...? AC loop moderate di/dt AC loop high di/dt CAUTION !

Details: AN19, AN44

Other topologies

EMI and filtering for DC/DC converters

Thomas Ginell Field Application Engineer Linear Technology Corporation

Copyright © 2009 Linear Technology. All rights reserved.

EMI

- Application voltage quality requirements
- On board interference
- Emmision
 - Radiated
 - Conducted

Also use vias and thermal relief for decoupling capacitor

Thermal relief

New example

- LTC3568
- 2MHz switching frequency

TYPICAL APPLICATION

LTC3568 block diagram

Chose output capacitor

- 0201 (0603 metric)
- 0402 (1005 metric)
- 0603 (1608 metric)
- 0805 (2012 metric)
- 1008 (2520 metric)
- 1206 (3216 metric)
- 1210 (3225 metric)
- 1806 (4516 metric)
- 1812 (4532 metric)
- 2010 (5025 metric)
- 2512 (6432 metric)

	Metric		Imperial
comparison	code		code
0.1x0.1 mm	0402		01005
	0603	-	0201
	1005	-	0402
	1608	-	0603
1x1mm	2012	-	0805
	2520		1008
	3216	-	1206
	3225		1210
	4516		1806
	4532		1812
	5025		2010
1x1 cm	6332		2512
	Actual		
		size	

)

4V 10uF X6S

4V 47uF X5R

Beware ! Bias dependency !

16V X6S +/- 10%

Then add temperature dependency

6.0

8.0

DC-Bias/V

10.0

12.0

14.0

16.0

-80.0

0.0

C1608Y5V1C225Z

2.0

4.0

X7R vs X5R

Same size, 0603

BUT, the X5R cap is almost 5 times larger to start with X5R cap still almost 2x capacitance at 5V !

Input ripple Buck example

© 2009 Linear Technology

Buck input current (from decoupling cap)

12V=>3.3V@15A

Decoupling

- Small ceramic capacitor:
 - 0603 25V 2.2uF esr 4mΩ L=1nH
- Large ceramic capacitor
 - 1206 25V 33uF esr 2.5mΩ L=1.5nH

Filter capacitor Z

© 2009 Linear Technology

Filter capacitors Z

- Use multiple package and capacitor sizes to combine their Z:s
 - Above might not be true, be smart?!?
- Its easy to simulate the low frequency behavior for EMI purposes
 - REALLY !
 - (150kHz-30MHz for EMI, higher for Decoupling)
 - LTspice from Linear Technology
 - Free
 - Easy to use
 - The most used spice simulator in the world
 - Fast, stable, accurate

How does the input voltage look on the input cap

Standard limits

© 2009 Linear Technology

But you need to use DC bias derating

New result

Decoupling strategy

- Keep impedance low over frequency
 - Beware of parallel resonance !
- Some capacitor package parasitic inductances
 - 1210 0.80nH
 - 0806 0.70nH
 - 0603 0.60nH
 - 0402 0.42nH
 - 0612 0.20nH
 - 0306 0.10nH
 - 0204 0.07nH
 - 3025 1.30nH

Layout in Deep

Switching Power Supply PCB Layout

An In Deep Look

Edited and Presented by Thomas Ginell FAE Scandinavia

Relevant Physical Effects in Switchmode PSU

- 1. Skin effect
- 2. Proximity effect
- 3. Magnetic dipol antennas
- 4. Near field and far field effects
- 5. Shielding with planes, Vias
- 6. Energy distribution over frequency of the different loops in a switch mode PSU
- 7. Current flow in typical buck and boost
- 8. Placement and routing strategies
- 9. Magnetic properties of components

Inductance

Most problems on PSU layouts relate to inductance on places where you do not want it. There are only a very few places where inductance in needed.

This presentation centers how we can support the nature in its inductance avoidance strategies.

Skin effect

As lower resistance material is used as thinner the skin depth gets.

	Resistivity (Ohm * m)	1Mhz (um)	100Mhz (um)
Copper	1,68e-8	66	6,6
Tin	1,09e-7	166	16,6
10e20 doped silicon	1e-5	1600	160
uMetal	1e-7	<1	<0,1

 $\delta = \sqrt{\frac{\rho}{\pi f \,\mu_r \mu_0}}$

Rule 1.1

AC current will only flow at the outside of the conductor

Rule 1.4

On 35um (1oz) copper the skin effect kicks in at about 3,5 Mhz

Proximity effect

Currents in the opposite direction attract each other. The same induction forces responsible for the skin effect work here in the opposite way, since the current has opposite direction.

This is the typical case for currents in switchmode PSU layouts.

Currents in the same direction force themself appart as they do inside the same conductor by the skin effect.

Magnetic dipol antennas

Dipo

$$R_r = \frac{320 \pi^4 f^4 A^2}{c^4}$$

Since R_r is low against 377 Ohm beacuse loop pattern sizes are low against wavelengt in practical switchmode PSUs, the radiated energy will rise proportional with R_r

In Any loop your AC current will circle around, the radiated energy will increase proportional to:

 f^4 and A^2

On the frequency f you can not do very much about since any filtering will reduce efficiency. But on the loop opening F, usually isolated area on your PC Board, you can keep it as small as possible.

Rule 3.1

Emitted radio energy increases with the square of the loop area you create

Rule 3.2

Passive antennas have the same characteristic receiving and transmitting.

Near field versus far field

Any near field transforms itself to a far field pattern

at the distance of about $\frac{\lambda}{2\pi}$ and adapts the 377 Ohm

far field impedance of our Universe.

Rule 4.1

Magnetic AC fields will always find a way to turn into radio waves out of your box. So keep them as small as possible

Rectangular conductor alone

Return current in plane

Return current

Identifying the buck hot loop

- switch on
- switch off
- Hot loop area = area switch on - area switch off

Buck hot loop <skin frequency

Hot loop >skin frequency

Hot loop examples

TECHNOLOGY

Other EMI sources

- Internal Vcc decoupling
 - Main switch driver
- External Switch Driver Signals

Figure 14

Power component footprints

Isolated converter

Transformer common mode EMI

If transformer ratio is 1:1

Then Vp=Vs

If Vp changes, Vs changes with the same voltage, Voltage between any primary to secondary winding will be constant

BUT

If transformer ratio is **not** 1:1 Voltage between primary to secondary windings will vary when total winding voltage changes.

THE MAGIC CAPACITOR

Another isolated converter issue

It is an antenna rising above the pcb

Hotloop on plane B

Vias

d	f _{resonance}	C	L	
(mm)	(MHz)	(pF)	(nH)	
n/a	18.4	400	187	Single-layer open loop

d (mm)	f _{resonance} (MHz)	C (pF)	L (nH)	
n/a	18.4	400	187	Single-layer open loop
n/a	21.2	400	141	Inner copper Short-Circuit loop

d (mm)	f _{resonance} (MHz)	C (pF)	L (nH)	
n/a	18.4	400	187	Single-layer open loop
n/a	21.2	400	141	Inner copper Short-Circuit loop
1.5	38.9	400	42	Solid Plane

d (mm)	f _{resonance} (MHz)	C (pF)	L (nH)	
n/a	18.4	400	187	Single-layer open loop
n/a	21.2	400	141	Inner copper Short-Circuit loop
1.5	38.9	400	42	Solid Plane
1.5	34.7	400	53	Rectangular Short-Circuit loop plane

10cm x 10cm

d (mm)	f _{resonance} (MHz)	C (pF)	L (nH)	
n/a	18.4	400	187	Single-layer open loop
n/a	21.2	400	141	Inner copper Short-Circuit loop
1.5	38.9	400	42	Solid Plane
1.5	34.7	400	53	Rectangular Short-Circuit loop plane
0.5	52.1	400	23	Thin Rectangular

10cm x 10cm

d (mm)	f _{resonance} (MHz)	C (pF)	L (nH)	
n/a	18.4	400	187	Single-layer open loop
n/a	21.2	400	141	Inner copper Short-Circuit loop
1.5	38.9	400	42	Solid Plane
1.5	34.7	400	53	Rectangular Short-Circuit loop plane
0.5	52.1	400	23	Thin Rectangular
0.27	55	400	21	

10cm x 10cm

d (mm)	f _{resonance} (MHz)	C (pF)	L (nH)	
n/a	18.4	400	187	Single-layer open loop
n/a	21.2	400	141	Inner copper Short-Circuit loop
1.5	38.9	400	42	Solid Plane
1.5	34.7	400	53	Rectangular Short-Circuit loop plane
0.5	52.1	400	23	Thin Rectangular
0.27	55	400	21	
0.12	69	400	13	Paper

Loop short-circuit effect experiment

d (mm)	f _{resonance} (MHz)	C (pF)	L (nH)	
n/a	18.4	400	187	Single-layer open loop
n/a	21.2	400	141	Inner copper Short-Circuit loop
1.5	38.9	400	42	Solid Plane
1.5	34.7	400	53	Rectangular Short-Circuit loop plane
0.5	52.1	400	23	Thin Rectangular
0.27	55	400	21	
0.12	69	400	13	Paper

- Inductance goes down with distance to next layer
- Multilayer PCB will have less inductance than 2-layer 1.5mm
- Thinner = better
- Doesn't need to be a GND-plane

October 2012

Power Supply Layout and EMI Christian Kueck

Introduction

PC-board layout determines the success or failure of every power supply project. It sets functional, electromagnetic interference (EMI), and thermal behavior. Switching power supply layout is not black magic, but is often overlooked until it is too late in the design process. Fortunately physics is on your side. Functional and EMI requirements must be met, and in a world of trade-offs in power supply unit layout, what is good for functional stability is good for EMI. Good layout from first prototyping on does not add to cost, but actually saves significant resources in EMI filters, mechanical shielding, EMI test time and PC board runs. This application note focuses primarily on nonisolated topologies, but will examine some isolated topologies as well. You will learn to make the optimum choices regarding PC-board layout for solid power supply designs.

I remember about a dozen years ago as a customer was

During the on cycle with S1 closed and S2 open, the AC current follows the red loop (Figure 1). During the off cycle, with S1 open and S2 closed, the AC current follows the blue loop. Both currents have a trapeze shape. People often have difficulty grasping that the loop producing the highest EMI is not the red nor the blue loop. Only in the green loop flows a fully switched AC current, switched from zero to I_{PEAK} and back to zero. We refer to the green loop as a hot loop, since it has the highest AC and EMI energy.

SILENCE PLEASE

Linear technology invented noise cancelling for switch mode regulators.

It is called Silent Switcher¹

(1) Silent Switcher is a registered trade mark and Patent pending from Linear Technology Corp.

© 2011 Linear Technology

How does it work

Even on the most compact design the decoupling components with the switch have some finite dimensions and create an EMI field.

LT8614 Silent Switcher

On a Linear Technology Silent Switcher two identical decoupling loops with opposite orientation cancel each others EMI field.

LT8614 EMI Performance

Figure 1. Noise Floor and the LT8614 Board at CISPR25 Radiated Measurement in an Anechoic Chamber

Figure 3. LT8610 and the LT8614, Switch Node Rising Edge Both at $8.4V_{IN}$, $3.3V_{OUT}$ at 2.2A

Efficiency vs. Switching Freqency

Application Note 144

November 2013

Reduce EMI and Improve Efficiency with Silent Switcher Designs

Christian Kueck

Questions ?

Thank you

