
DD2452 Formal Methods

Take-home Examination Problems
25 October 2018

Dilian Gurov, KTH EECS
08-790 81 98

Give cleanly written solutions in English or Swedish, each problem beginning on a new page. Write your name on
all sheets. The maximal number of points is given for each problem. Up to two bonus points from the homework
assignments will be taken into account for each level (E, C, and A). Upload your solutions on Canvas, as a PDF
file, no later than 10:00 on Monday, 29 October 2018. The exam is strictly individual. KTH’s rules for cheating
and plagiarism apply.

1 Level E

For passing level E you need 8 (out of 10) points from this section.

1. Consider Dilian’s Verification Condition Generator, presented in class (slides 16-17 2p
of Lecture 2). Explain briefly the idea behind the vc-function. How does it relate to the
wlp-function, presented on slide 11? Why does it introduce an accumulator? How is this
accumulator used?

Solution: For while-free programs, the accumulator is in fact dummy (true), and the clauses
for all non-loop commands just propagate it unchanged. The reason the accumulator is
needed is that in the case of an annotated while-loop, the candidate loop invariant η is
propagated “up-ward” as the weakest precondition, instead of the real one, and the proof
obligations that have been accumulated so far need to be checked separately (every loop
gives rise to two proof obligations, corresponding to conditions (1) and (3) of when η is a
suitable loop invariant, see slide 14 of Lecture 2). Introducing an accumulator allows the
vc-function to be defined by structural induction on the command C, like the wlp-function.

2. Consider the wp-function over the Intermediate Language, presented on slide 23, and the 2p
treatment of annotated while-loops presented on slide 26. Explain briefly the idea behind this
treatment. Why does it work? How does it relate to the Partial− while rule of Hoare logic?

Solution: Asserting η makes sure that η really holds at loop entry. The rest deals with the
two branches of the loop, and are better understood by inserting “havoc vars; assume η;”
into the two branches of the choice command. This would result in:

havoc vars; assume η; assume B; c; assert η; assume false []

havoc vars; assume η; assume ¬B

The first branch checks whether η is indeed a loop invariant, exactly as the premise to
the Partial− while rule of Hoare logic (recall the Hoare-triple Correctness Theorem from
slide 22). The havoc-ing is used to make sure that the Hoare triple holds for any values of
the variables (and not just the particular ones with which one might enter the loop body).
“assume η; assume B;” is equivalent to “assume η ∧B;”, while “assume false” has the effect
of making ψ immaterial when analysing this branch. Analogously, the second branch checks
that η ∧ ¬B entails ψ for any values of the variables.

3. Consider the adequate set of CTL connectives: 3p

φ ::= false | p | ¬φ | φ ∧ φ | EX φ | AF φ | E (φ U φ)

which we used in the Labelling Algorithm, and the re-write rules for the remaining connec-
tives, presented on slide 8 of Lecture 6. Complete the rules with a rule for A (φUψ). Justify
formally your new rule. (Hint : See book.)

Solution: We can add the following rule:

A (φ U ψ) ≡ AF ψ ∧ ¬E (¬ψ U (¬φ ∧ ¬ψ))

It can be formally justified as follows:

A (φ U ψ) ≡ ¬(E (¬ψ U (¬φ ∧ ¬ψ)) ∨ EG ¬ψ) {Book, page 216}
≡ ¬(E (¬ψ U (¬φ ∧ ¬ψ)) ∨ ¬AF ψ) {Re-writing EG}
≡ ¬E (¬ψ U (¬φ ∧ ¬ψ)) ∧ AF ψ {Re-writing ∨}
≡ AF ψ ∧ ¬E (¬ψ U (¬φ ∧ ¬ψ)) {Commut. of ∧}

4. Apply the CDCL algorithm from the Lecture 4 slides to determine the (un)satisfiability of3p
the following Boolean formula. Whenever the algorithm does not clearly specify what clause
or literal to consider next, hence allowing for more than one choice, you are free to make
your own choice (assumption). Each step of the algorithm should be properly explained in
the final solution.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3)
∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)

Solution: The CDCL algorithms takes as input a set of clauses, hence we translate the
Boolean formula to the following list of clauses.

(a) x1 ∨ x2 ∨ x3
(b) ¬x1 ∨ x2 ∨ x3
(c) x1 ∨ ¬x2 ∨ x3
(d) ¬x1 ∨ ¬x2 ∨ x3
(e) x1 ∨ x2 ∨ ¬x3
(f) ¬x1 ∨ ¬x2 ∨ ¬x3
(g) x1 ∨ ¬x2 ∨ ¬x3
(h) ¬x1 ∨ x2 ∨ ¬x3
Step 1: We apply the CDCL algorithm with the above clauses as input. Since there are
no unit clauses, and there are still clauses to satisfy, we can make a decision by assigning a
truth value to an unassigned variable. We choose x1 = 0, which does not make any clause
to become unit. Hence, we make another decision by assigning x2 = 0. As a result, the
clause (a) becomes unit, and the algorithm applies unit propagation by setting x3 = 1.
Unit propagation leads to a conflict between clauses (a) and (e). As the path to the conflict
contains two decisions, namely x1 = 0 and x2 = 0, we learn that these assignments can not
both hold at the same time. Therefore, we learn the conflict clause:

(i) x1 ∨ x2

Step 2: We apply another iteration of the CDCL algorithm with the extended clauses (a-i)
as input. Again, since there are no unit clauses, and there are still clauses to satisfy, we need
to make a decision. We choose x1 = 0, which now forces the clause (i) to become a unit
clause and set x2 = 1. As a reslut, the clause (c) also becomes a unit clause and x3 = 1,
which is in conflict with the clause (g). As the path to the conflict contains one decision,
namely x1 = 0, we learn the conflict clause:
(j) x1
Step 3: We now apply another iteration of the CDCL algorithm with the extended clauses
(a-j) as input. Since there is a unit clause, i.e., x1, we first apply unit propagation on literal
x1, and then make a decision by setting x2 = 0. As a reslut, the clause (b) also becomes a
unit clause and x3 = 1, which is in conflict with the clause (h). As the path to the conflict
contains one decision, namely x2 = 0, we learn the conflict clause:
(k) x2
Step 4: We now apply a final iteration of the CDCL algorithm with the extended clauses
(a-k) as input. Since there are two unit clauses, i.e., x1 and x2, we apply unit propagation on
literals x1 and x2. As a reslut, the clause (d) also becomes a unit clause and x3 = 1, which
is in conflict with the clause (f). As the path to the conflict contains no decisions, we can
conclude that the original formula is unsatisfiable.

2 Level C

For grade D you need to have passed level E and obtained 5 (out of 10) points from this section.
For passing level C you need 8 points from this section.

1. Consider again the wp-function presented on slide 23 of Lecture 2. In particular, notice that 5p
(unlike the vc-function) the wp-function works without using an accumulator parameter.
Use the same underlying idea to present a modified version of the vc-function (that is,
also defined on the source language!) that is still defined by structural induction on C,
but does not use an accumulator. Explain and justify your new definition. (Hint : Combine
the translation to Intermediate Language with the wp-function to derive a defining clause
for vc({η} while B {C}, ψ). Show your derivation as justification.) Explain also how, even
though without using an accumulator, your version achieves the same result as the original
vc-function.
Solution: Since we are getting rid of the accumulator, for the non-loop commands we can
reuse the defining clauses of the wlp-function, presented on slide 11:

vc(x = E,ψ)
def
= ψ[E/x]

vc(C1;C2, ψ)
def
= vc(C1, vc(C2, ψ))

vc(if B {C1} else {C2}, ψ)
def
= (B ⇒ vc(C1, ψ)) ∧ (¬B ⇒ vc(C2, ψ))

For the annotated loop we can derive the defining clause:

vc({η} while B {C}, ψ)
def
= η ∧ ((η ∧B ⇒ vc(C, η)) ∧ (η ∧ ¬B ⇒ ψ))[vars ′/vars]

where vars are the variables that are assigned to in C, and vars ′ are fresh variables.

This achieves the same as the original vc-function, because it renames the variables that are
assigned to in C to fresh ones. With this, we can propagate the accumulated precondition
up-ward as a conjunct to η, instead of propagating it separately via an accumulator. Here is
a derivation that justifies the last clause (in typewriter font):

vc({eta} while B {C}, psi)

= {Partial translation to intermediate language (we do not

translate C to c), where vars are the variables that are

assigned to in C}

wp(assert eta; havoc vars; assume eta;

(assume B; C; assert eta; assume false [] assume !B), psi)

= {Composition}

wp(assert eta; havoc vars; assume eta,

wp(assume B; C; assert eta; assume false [] assume !B, psi))

= {Choice}

wp(assert eta; havoc vars; assume eta,

wp(assume B; C; assert eta; assume false, psi) /\ wp(assume !B, psi))

= {Assume}

wp(assert eta; havoc vars; assume eta,

wp(assume B; C; assert eta; assume false, psi) /\ (!B ==> psi))

= {Composition}

wp(assert eta; havoc vars; assume eta,

wp(assume B; C; assert eta, wp(assume false, psi)) /\ (!B ==> psi))

= {Assume}

wp(assert eta; havoc vars; assume eta,

wp(assume B; C; assert eta, false ==> psi) /\ (!B ==> psi))

= {Optimization: false ==> psi is equivalent to true}

wp(assert eta; havoc vars; assume eta,

wp(assume B; C; assert eta, true) /\ (!B ==> psi))

= {Composition}

wp(assert eta; havoc vars; assume eta,

wp(assume B; C, wp(assert eta, true)) /\ (!B ==> psi))

= {Assert}

wp(assert eta; havoc vars; assume eta,

wp(assume B; C, eta /\ true) /\ (!B ==> psi))

= {Optimization: eta /\ true is equivalent to eta}

wp(assert eta; havoc vars; assume eta,

wp(assume B; C, eta) /\ (!B ==> psi))

= {Composition}

wp(assert eta; havoc vars; assume eta,

wp(assume B, wp(C, eta)) /\ (!B ==> psi))

= {Assume}

wp(assert eta; havoc vars; assume eta, (B ==> wp(C, eta)) /\ (!B ==> psi))

= {Composition}

wp(assert eta; havoc vars, wp(assume eta, (B ==> wp(C, eta)) /\ (!B ==> psi)))

= {Assume}

wp(assert eta; havoc vars, eta ==> (B ==> wp(C, eta)) /\ (!B ==> psi))

= {Optimization: eta ==> (B ==> wp(C, eta)) /\ (!B ==> psi) is

equivalent to (eta /\ B ==> wp(C, eta)) /\ (eta /\ !B ==> psi)}

wp(assert eta; havoc vars, (eta /\ B ==> wp(C, eta)) /\ (eta /\ !B ==> psi))

= {Composition}

wp(assert eta, wp(havoc vars, (eta /\ B ==> wp(C, eta)) /\ (eta /\ !B ==> psi)))

= {Havoc}

wp(assert eta, ((eta /\ B ==> wp(C, eta)) /\ (eta /\ !B ==> psi))[vars’/vars])

= {Assert}

eta /\ ((eta /\ B ==> wp(C, eta)) /\ (eta /\ !B ==> psi))[vars’/vars]

2. In the course, we gave a “local” Semantics of CTL (slide 24 of Lecture 5), in the sense that
it was given as a satisfaction relation M, s |= φ over individual states s. This presentation
makes it less suitable for a formal justification of the Labelling Algorithm (slides 9-10 of
Lecture 6).

(a) Define an alternative, global semantics of CTL, by means of a denotation ||φ||M consisting3p
of all states s ∈ S that satisfy φ. That is, define || φ ||M by structural induction, where it
suffices (for brevity) to consider just the adequate set from Problem E3 above. You are
encouraged to introduce suitable state transformers in order to make the formal definition
more elegant.
Solution: This problem is related to Problem 7 of Book, page 248.
Let M = (S,→, L) be a Kripke structure. Define:

|| false ||M def
= ∅ || p ||M def

= {s ∈ S | p ∈ L(s)}
|| ¬φ ||M def

= S − || φ ||M || φ1 ∧ φ2 ||M
def
= || φ1 ||M ∩ || φ2 ||M

|| EX φ ||M def
= pre∃ (|| φ ||M) || AF φ ||M def

= pre∗∀ (|| φ ||M)

|| E (φ U ψ) ||M def
= unt∃ (|| φ ||M, || ψ ||M)

where we introduce the state transformers (X and Y range over subsets of S):

pre∃ (X)
def
= {s ∈ S | ∃s′ ∈ X. s→ s′}

pre∗∀ (X)
def
= {s ∈ S | ∀π. (π(0) = s⇒ ∃i ≥ 0. π(i) ∈ X)}

unt∃ (X,Y)
def
= {s ∈ S | ∃π. (π(0) = s ∧ ∃i ≥ 0. (π(i) ∈ Y ∧ ∀j < i. π(j) ∈ X))}

(b) Use your global semantics of CTL to formally justify the Labelling Algorithm.2p
Solution: The algorithm essentially works by structural induction on φ, computing ||φ||M.
The first 5 cases directly follow the corresponding defining clauses of || φ ||M.
Case AF φ uses the unfolding equivalence:

AF φ ≡ φ ∨ AX AF φ

corresponding to the semantic equality:

pre∗∀ (X) = X ∪ pre∀ (pre∗∀ (X))

expressed with the help of the state transformer:

pre∀ (X)
def
=

{
s ∈ S

∣∣ ∀s′ ∈ X. s→ s′
}

Finally, case E (φ U ψ) uses the unfolding equivalence:

E (φ U ψ) ≡ ψ ∨ (φ ∧ EX E (φ U ψ))

corresponding to the semantic equality:

unt∃ (X,Y) = Y ∪ (X ∩ pre∃ (unt∃ (X,Y)))

3 Level A

For grade B you need to have passed level C and obtained 5 (out of 10) points from this section.
For grade A you need 8 points from this section.

1. Consider again your global Semantics of CTL from Problem C2a. Show that your semantics 4p
is consistent with the local one given in class (slide 24 of Lecture 5). That is, prove by
structural induction that s ∈ || φ ||M if and only if M, s |= φ. State explicitly the induction
hypotheses in each inductive case, and indicate where you use them. Show the proofs of (at
least) the three cases p, φ1 ∧ φ2 and EX φ.
Solution:
Case p. We have:

s ∈ || p ||M ⇔ s ∈ {s ∈ S | p ∈ L(s)} {Def. || φ ||M}
⇔ p ∈ L(s) {Set theory}
⇔M, s |= p {Def. M, s |= φ}

Case φ1 ∧ φ2. Assume s ∈ || φ1 ||M if and only if M, s |= φ1, and s ∈ || φ2 ||M if and only if
M, s |= φ2, for all s ∈ S (induction hypotheses). We have:

s ∈ || φ1 ∧ φ2 ||M ⇔ s ∈ || φ1 ||M ∩ || φ2 ||M {Def. || φ ||M}
⇔ s ∈ || φ1 ||M and s ∈ || φ2 ||M {Set theory}
⇔M, s |= φ1 and M, s |= φ2 {Ind. hyp.}
⇔M, s |= φ1 ∧ φ2 {Def. M, s |= φ}

Case EX φ. Assume s ∈ || φ ||M if and only if M, s |= φ, for all s ∈ S (induction hypothesis).
We have:

s ∈ || EX φ ||M ⇔ s ∈ pre∃ (|| φ ||M) {Def. || φ ||M}
⇔ ∃s′ ∈ || φ ||M. s→ s′ {Def. pre∃}
⇔ ∃s′. (s→ s′ ∧ s′ ∈ || φ ||M) {Logic}
⇔ ∃s′. (s→ s′ ∧M, s′ |= φ) {Ind. hyp.}
⇔M, s |= EX φ {Def. M, s |= φ}

2. Consider the following program snippet and show via Predicate Abstraction that location
BOOM is not reachable.

x = num;

y = num + 1;

if (x == y) {

//BOOM

}

(a) Create an abstract Boolean program using the set of predicates P = {x == num}, and 3p
explain why location BOOM is reachable in the abstract program. Explain why this is not
a real counterexample for the original program.

Solution: The predicate x == num yields the following Boolean program.

1. bool b0;

2. b0 = true;

3. b0 = b0;

4. if (*) {

//BOOM

}

The resulting Boolean program is obtained as follows:
1. We declare a variable b0 corresponding to predicate x == num.
2. The predicate captures the assignment x = num precisely, since, after the execution

of the assignment statement, the predicate is true.
3. The assignment y = num + 1 is represented either as b0 = b0 or as skip, since the

predicate cannot capture any relation on variable y, and neither x nor num is modified
by the assignment statement.

4. The truth value of the conditional statement is unknown, since the predicate does
not capture any relation of variable y.

Although location BOOM is reachable in the Boolean program, this is a spurious coun-
terexample since variables x and y will never be equal in the original program.

(b) Extend the set of predicates P with additional predicates that allow to prove that location3p
BOOM is not reachable.
Solution: We extend the predicate set by adding the predicate x == y, hence yielding
the following Boolean program.

1. bool b0, b1;

2. b0 = true; b1=*;

3. b0 = b0; b1 = b0 ? false : *;

4. if (b1) {

//BOOM

}

The resulting Boolean program is obtained as follows:
1. We declare the variables b0 and b1 corresponding to predicates x == num and x ==
y, respectively.

2. As before, predicate b0 captures the assignment x = num precisely, while predicate
b1 can have any value since the value of variable x is modified by the assignment
statement.

3. As before, assignment y = num+ 1 is represented either as b0 = b0 or as skip, since
the predicate cannot capture any relation on variable y, and neither x nor num is
modified by the assignment statement. On the other hand, predicate b1 is false if
predicate b0 is true, since x == num and y == num+ 1 imply x 6= y. Otherwise, if
b0 is false, nothing can be concluded about the value of predicate b1.

4. The truth value of the conditional statement is precisely captured by predicate b0.
As a result, location BOOM is never reachable in the Boolean program, which in turn
implies that it is unreachable in the original program.

