DD2452 Formal Methods
Lab 2: Model Checking of a Device Driver of a
Transmitter

Jonas Haglund

October 9, 2018



1 Introduction

In this lab you will:
1. Design/model in pseudocode a device driver controlling a transmitter.
2. Model the transmitter in pseudocode.

3. Implement a model in NuSMV that consists of the composition of
these two pseudocode models.

4. Express some properties in CTL and check whether the NuSMV model
satisfies them. One of these checks are used to verify that the device
driver does not configure the transmitter into an undefined /unspecified /unknown
state where the behavior of the transmitter is not specified. If the
transmitter enters such a state, it could do anything, e.g. transmit-
ting confidential data in memory.

Read all of this document before you start with the lab. Section
2 describes the operation of the transmitter. Section 3 describes the interface
of the device driver. Section 4 describes the tasks of the lab. Section 5
describes the grading.

2 Transmitter

The transmitter performs three kinds of operations (which can be thought
of as being performed, but not necessarily, in the following order):

1. Resets itself.
2. Transmits messages located in RAM.
3. Tear downs (cancels) transmission to enter an idle state.

To enable the CPU to command the transmitter to perform these op-
erations, the transmitter has the following set of registers (which the CPU
can write in order to command the transmitter and read to see the state
of the transmitter; the registers are small in order to avoid the state space
explosion problem of model checkers):

e RESET: 1-bit register with the initial value 0 when the transmitter
(computer system) is powered on.

e TRANSMIT: 2-bit register that has no specified initial value.

e TEARDOWN: 1-bit register with the initial value 0.



e The transmitter has three buffer descriptors (BDs), with indexes 1
through 3, used to describe the location of the buffers containing the
messages to transmit. Each buffer descriptor has five fields:

— BD_NPJ1 ... 3]: Three 2-bit registers (NP = Next Pointer).
— BD_BPJ1 ... 3]: Three 2-bit registers (BP = Buffer Pointer).
— BD_BLJ[1 ... 3]: Three 2-bit registers (BL = Buffer Length).
— BD_OWN{]1 ... 3]: Three 1-bit registers (OWN = Ownership).
— BD_EOQJ1 ... 3]: Three 1-bit registers (EOQ = End of Queue).

A device driver is a piece of software of an operating system controlling
a specific I/O device. A device driver of the transmitter is intended to
use/configure the transmitter by first initializing the transmitter. Then the
transmitter can be used to transmit messages. When the transmitter (or the
computer) shall be turned off, the device driver can tear down transmission.

2.1 Initialization
The device driver initializes the transmitter as follows:

a) The device driver resets the transmitter by writing 1 to RESET.
When the transmitter has reset itself, the transmitter writes 0 to RE-
SET to signal to the device driver that the reset is complete.

b) When the transmitter has reset itself, the device driver shall initialize
TRANSMIT by writing 0b00 to TRANSMIT.

A reset operation must not be initiated during an ongoing ini-
tialization, transmission or tear down.

2.2 Transmission

The device driver commands the transmitter to transmit a set of messages
by first assigning one free buffer descriptor (not currently in use by the
transmitter to transmit a message) to each message. Then, each buffer
descriptor is initialized as follows:

a) The start address of the associated message is written to BD_BP.
For example, if the device driver shall command the transmitter to
transmit two messages, using the buffer descriptors with indexes 1
and 2, where the first message starts at byte address 2 and the other
message starts at byte address 3, then the device driver writes 0b10
to BD_BP[1] and 0bl1 to BD_BP[2].

b) The length of the associated message is written to BD_BL. For exam-
ple, if the two messages have length 2 and 1 bytes, respectively, then
the device driver writes 0b10 to BD_BL[1] and 0b01 to BD_BL[2].



¢) The ownership bit is set, to indicate that the transmitter ”owns” /uses
the buffer descriptor. For the example, 0bl is written to BD_OWN/[1]
and BD_OWN]2].

d) The EOQ bit is cleared (which is set by the transmitter if the trans-
mitter interprets the current buffer descriptor as last in the buffer
descriptor queue). For the example, 0b0 is written to BD_EOQ[1]
and BD_EOQ]2].

e) The NP field is written to form a buffer descriptor queue. The NP
fields is written with the index of the next buffer descriptor in the
queue, or zero if the buffer descriptor is last in the buffer descriptor
queue. For the example, if the message in buffer descriptor 1 shall
be transmitted first and then the message in buffer descriptor 2, then
the device driver writes 0b10 to BD_NP[1] and 0b00 to BD_NP[2],
resulting in a buffer descriptor queue starting with buffer descriptor 1
and ending with buffer descriptor 2.

After all buffer descriptors have been initialized and a queue has been
formed, the queue is given to the transmitter. If the transmitter is cur-
rently not transmitting, the device driver writes the index of the first buffer
descriptor of the queue to TRANSMIT (for the example, 0b01). If the
transmitter is currently transmitting, the device driver appends the new
queue to the end of the queue under transmission. For the example, if the
transmitter transmits a queue with the tail being buffer descriptor 3, then
the device driver writes 0b01 to BD_NP[3].

The actual transmission is done as follows. When TRANSMIT is writ-
ten (TRANSMIT must not be written when it is not zero, except
during initialization), the transmitter starts processing the buffer descrip-
tor queue beginning with the buffer descriptor with the index just written
to TRANSMIT. The buffer descriptor in the queue must meet the
following requirements:

e The buffer length field must not be zero.

e The buffer to transmit must be completely located in RAM.
RAM starts at address 1 and ends at address 2, inclusive.

e The buffer must not overflow with respect to unsigned 22
arithmetic (the addresses consist of 2 bits; see the description

of the BD_BP and BD_BL fields above).
e The ownership bit must be set.

e The EOQ bit must be cleared.



After the transmitter has read the buffer descriptor and identified the
location of the buffer in RAM, the transmitter transmits the message. Then
the transmitter performs a number of operations on the buffer descriptor.
The performed operations depend on whether the buffer descriptor is last
in the queue or not:

e Last (the NP field is zero of the buffer descriptor): The transmitter
sets the EOQ bit, clears the ownership bit (signaling to the device
driver that the buffer descriptor can be used for a new message to
transmit), writes 0 to TRANSMIT, and enters an idle state.

e Not last (the NP field is not zero of the buffer descriptor): The trans-
mitter clears the ownership bit, and sets TRANSMIT to the value
of the NP field of the buffer descriptor. Then the transmitter pro-
cesses the next buffer descriptor, in the same way as the transmitter
processed the current buffer descriptor, unless the transmitter has been
commanded to perform a tear down. If the transmitter shall tear down
transmission, the transmitter stops processing the queue and performs
tear down operations.

A misqueue condition occurs if the device driver appends a "new” buffer
descriptor queue to the current, ”"old”, queue under transmission immedi-
ately after the transmitter has interpreted the ”old” queue as being com-
pletely processed. This means that the device driver has commanded the
transmitter to transmit messages, but which the transmitter unintention-
ally will not transmit. The device driver detects a misqueue condition when
the device driver processes the "old” queue (which the device driver does in
order to be able to reuse buffer descriptors) and reads a buffer descriptor in
the 70ld” queue with:

e a cleared ownership bit,

e a set EOQ bit, and

e a non-zero NP field (which contains the index of the first buffer de-
scriptor in the "new” queue that unintentionally will not be processed
by the transmitter).

The device driver corrects a misqueue condition by writing the index of
the first buffer descriptor in the "new” queue to the TRANSMIT register.
TRANSMIT shall not be written during tear down.

2.3 Tear Down

The device driver can command the transmitter to cancel transmission by
writing 1 to TEARDOWN. The transmitter reacts to such a write by
finishing the transmission of the current message, and then performs a set of



operations. This set of operations depends on whether the buffer descriptor
whose buffer was just transmitted is last in the queue under transmission:

e Last (TRANSMIT = 0): The TEARDOWN register is cleared,

to signal to the device driver that transmission has been torn down.

e Not last (TRANSMIT +# 0): The EOQ bit is set and the ownership
bit is cleared of the buffer descriptor with the index in TRANSMIT,
and TRANSMIT is cleared. Then the TEARDOWN register is
cleared to signal to the device driver that the tear down is complete.

A tear down shall not be initiated during initialization or tear
down.

3 Interface of the Device Driver

The device driver has three functions that can be invoked by the operating
System:

e open(): Initializes data structures of the device driver and the trans-
mitter to enable transmission of messages. When open() has termi-
nated, the device driver and the transmitter shall be ready to transmit
messages. That is, invocations of transmit(address, length) can
now be made.

e transmit(address : word[2], length : word[2]): Given the start
address address and the length length in bytes of a message to trans-
mit, transmit() configures the transmitter to transmit the message.
This means that transmit() performs the following operations (not
necessarily in the given order):

— Assigns a new buffer descriptor to the message, if there are free
buffer descriptors (otherwise transmit() does nothing and re-
turns).

— Updates the data structures of the device driver.

— Initializes the new buffer descriptor appropriately.

Gives the new buffer descriptor to the transmitter. How the new
buffer descriptor is given to the transmitter depends on whether
the transmitter is currently transmitting:

* Not transmitting: The index of the new buffer descriptor is
written to TRANSMIT.

* Transmitting: The index of the new buffer descriptor is writ-
ten to the NP field of the last buffer descriptor in the buffer
descriptor queue under transmission, and corrects any mis-
queue condition.



e stop(): Configures the transmitter into an idle state and updates
data structures of the device driver. When stop() has terminated,
the transmitter is in an idle state, but is ready to transmit messages.

All three functions must not configure the transmitter into an
undefined state (which is a state that the transmitter enters when
the device driver configures the transmitter to perform an unde-
fined operation).

These three functions cannot be executed in parallel. Which of the three
functions the operating system invokes next depends on which function that
was invoked most recently. If the computer has just been turned on, then the
operating system will first invoke open(). Otherwise, if the most recently
invoked function is:

e open(): then the operating system may invoke any function.

e transmit(): then the operating system may invoke only transmit()
or stop().

e stop(): then the operating system may invoke any function.

4 Tasks

Your main task is to implement a model in NuSMV that describes the oper-
ations of and the interaction between the device driver and the transmitter.
This model shall be constructed by first modeling the device driver and
the transmitter separately in pseudocode. The models of the device driver
and the transmitter are preferably structured into submodels, where each
submodel describes the operations of open(), transmit(), stop(), or one
of the three kinds of the operations of the transmitter, namely initializa-
tion/reset, transmission, or tear down. To ease the implementation of the
combined model in NuSMV, one "table” (a set of if-then-else statements)
is constructed for each variable that is modified in the pseudocode. Each
table describes how and when the corresponding variable is modified. These
tables are then used to implement in NuSMV the combination of the model
of the device driver and the model of the transmitter. The following steps
must be followed.

4.1 Step 1: Model open(), transmit() and stop()

Design and write pseudocode of open(), transmit(address, length)
and stop() such that they provide the desired functionality without
configuring the transmitter into an undefined state. It is important
the the device driver is aware of which buffer descriptors that may be in
use by the transmitter. Use descriptive variable names. This gives three
models, each described in pseudocode, one for each function.



4.2 Step 2: Identify Relevant Control Points/States of open(),
transmit() and stop()

Identify the relevant states/control points, of open(), transmit(address,
length) and stop() in the pseudocode from Step 1, that must ex-

ist in order to model the relevant behavior of and interaction
between the device driver and the transmitter. For instance, the
transmitter can perform operations simultaneously as the CPU executes
transmit(address, length). Say that open() is described by the follow-

ing pseudocode:

open()
RESET := 0b1_1;
while (RESET = 0b1.1)

x := 0;
y:=0

Consider the following three states and their associated meaning to iden-
tify the "relevant” control points of this pseudocode description of open():

e open_idle: open() is currently not executed.

e open_perform reset: open() is currently executed and the next
operation to be performed by open() is to write 1 to the RESET
register and to loop while RESET = 1.

e open _clear_x_and_y: open() is currently executed and the next op-
eration is to clear x and y.

To easier understand what control point each state denotes, the pseu-
docode is commented at the control points with the name of the state rep-
resenting that control point:

open()

//open_perform reset
RESET := 0bl_1;
while (RESET = 0b1.1)

)

//open_clear_x_and_y

x := 0;
y:=0
//open_idle



This assignment of control points to states does not make sense. Assume
the model includes descriptions of only the CPU performing operations dur-
ing a transition (the model can also include descriptions of the CPU and
the transmitter performing operations simultaneously, and also include de-
scriptions of only the transmitter performing operations; this gives three
possible combinations of what device operations are described by the next
transition of the complete model: only the CPU, both the CPU and the
transmitter, and only the transmitter). A ”transition” describing only CPU
operations from a state in which open is at the control point denoted by
open_perform _reset, and ending in a state in which open is at the control
point denoted by open_clear_x_and_y, is not well-defined (such a ”tran-
sition” does not exist). The reason is that this ”transition” describes only
operations of the CPU, where the CPU sets RESET and then ”waits” until
RESET is cleared, which never happens. Hence, the while loop does not
terminate and there is no resulting state.

Hence, a state open_check reset must be defined with the meaning
that open() is currently executed and the next operation is to check the
while guard:

open()
//open_perform reset
RESET := 0bl_1;
//open_check reset
while (RESET = 0b1.1)

//open_clear x_and_y
x := 0
y:=0
//open_idle

With this additional state, the model can describe the behavior of the
CPU first setting RESET, and the transmitter to clear RESET before/after
each time the CPU has checked whether RESET = 1.

Do you think the state open_clear_x_and_y is needed if x and y are
variables only used by the device driver? Why (not)?

If open_state is a variable specifying at which control point/state the
CPU is at/in when executing open(), then the modifications of open_state
that reflect the control flow of the pseudocode of open(), can be described in
a "table” of if-then-else statements as follows (excluding when open _state
is changed from open_idle to open_perform _reset which describes when
open() is invoked):

if open_state = open_perform _reset then
open_state := open_check_reset



else if open_state = open_check_reset & RESET = 0b1_1 then
open_state := open_check_reset

else if open_state = open_check_reset & RESET = 0b1_1 then
open_state := open_clear_x_and_y

else if open_state = open_clear x_and_y then
open_state := open_idle

To get to the point. In this second step, the task is to:

e Identify all relevant control points of your design of open(),
transmit() and stop(). Motivate why the chosen transition
granularity makes sense (the set of operations described by
each transition).

e Use descriptive state names (perhaps a name that starts with the name
of the function and that describes what the next operation is).

e In the pseudocode from Step 1, at each control point iden-
tified by a state, write a comment with the name of corre-
sponding state at that control point.

Be careful to not insert too many states since that complicates the im-
plementation of the model in NuSMV (making the model more complicated
and less trustworthy/more buggy), and makes the state space explosion a
more likely problem.

4.3 Step 3: Model Transmitter

Model the transmitter in pseudocode, with comments. Use descrip-
tive variable names. Motivate why the chosen transition granularity
makes sense. Explain how the model describes the synchronization
between the transmission operations and the tear down operations
when a tear down shall be performed (after the transmission of
the current message).

4.4 Step 4: Plan for Combining Models

Decide how the following five aspects shall be included in the combined
model:

e How does the model record which function of the device
driver that was executed most recently?

¢ When does what perform an operation? When shall what part
of the model make a transition? Shall it be the device driver or the
transmitter, or both? Shall it be open(), transmit() or stop()?

10



Shall it be reset, transmission or tear down operations? The an-
swers to these questions are probably best given in terms of
a table (of if-then-else statements) specifying when each part
of the model makes a transition. When answering these questions,
consider your answer to the question in the previous bullet.

e What are the erroneous configurations of the transmitter?
(Read, in detail, Section 2, Transmitter.) How should the
model of the transmitter react to an erroneous configuration? Write a
list describing all erroneous configurations, how they are de-
tected in the model, and how the model handles such cases.
For instance, ”The device driver writes non-zero to TRANSMIT
during initialization”, is detected when variablel = valuel & vari-
able2 < value2 & ..., in which case the model performs the assign-
ment variable3d := value3.

e Operating systems contain bugs. How are the arbitrary argu-
ments to transmit(address, length) modeled?

4.5 Step 5: Preparations for Implementing the Combined
Model in NuSMV

Specify the variables to be used in the implementation of the combined
model in NuSMV, their initial values, and how and when the variables are
modified:

e For each variable in the pseudocode models of the device driver and
the transmitter, write one ”table” of if-then-else statements specifying
how and when that variable is modified (similar to what is done for
the open_state variable in the example discussing states that repre-
sent control points for open() in Section 4.2, Step 2).

e Comnsidering your answers to the questions in Section 4.4,
Step 4, what variables are needed in addition to the vari-
ables used in the pseudocode of the device driver and the
transmitter? For each of these additional variables, write one ”ta-
ble” specifying how and when that variable is modified.

e For each listed variable, specify whether that variable has an initial
value, and if so, what that initial value is.

4.6 Step 6: Implement and Document the Combined Model
in NuSMV

Use the tables you wrote in the previous step, to implement a model in
NuSMV that describes the operation of and the interaction between the

11



device driver and the transmitter. Document your NuSMV code with
comments describing:

e How the modules are connected and why the chosen structure makes
sense.

e What behavior each module describes.

e What each variable is used for.

4.7 Step 7: Checking Correctness of Implemented Model

Verify some properties of your model to make sure the model describes
the expected behavior of the device driver and the transmitter and their
interaction. The following properties must be proved by NuSMV:

e It is always possible for the model to sooner or later make transitions
that describe the operations of open(), transmit(), and stop().

e It is always possible for the model to sooner or later make transitions
that describe the reset, transmission and tear down operations of the
transmitter.

e open(), transmit(), stop() cannot be executed simultaneously.

o If the transmitter performs a reset, then the transmitter does not
transmit nor performs a tear down.

o If the transmitter transmits, then the transmitter is not performing a
reset.

e If the transmitter transmits, then the transmitter is not performing a
tear down or the tear down is waiting for the transmission to finish.

e If the transmitter performs a tear down, then the transmitter is not
performing a reset.

o If the transmitter performs a reset, then open is currently executed.

e If the transmitter performs a tear down, then stop is currently exe-
cuted.

Write the CTL formulas in a readable way (a long formula on a
single line is difficult to interpret, but inserting line breaks at appropriate
points might make it easier). Try to figure out around three CTL
formulas to check the correctness of your model and check them
as well. For instance, if the device driver/transmitter is in a certain state,
then the transmitter/device driver is (not) doing a certain thing. Describe
the CTL formulas in natural language and motivate why they are
good for checking the correctness of the model.

12



4.8 Step 8: Verification of Safe Device Driver

Verify in NuSMYV that the transmitter never performs an unde-
fined operation. Motivate why the CTL formula is correct.

Describe in natural language two properties that are relevant for verifi-
cation. One property shall state something about the data structure(s) of
the device driver, and the other property shall state something about the
buffer descriptor queue of the transmitter. Formalize the two properties
as CTL formulas and motivate why the CTL formulas are correct.
Check the two properties with NuSMV (NuSMV does not need to prove
them, just check them). If the properties are not proved, what is
wrong?

4.9 Step 9: Verification of Synchronization and No Misqueue
Conditions

Model the system accurately in the sense that the model describes the par-
allel execution of the device driver and the transmitter. Verify in NuSMV
that all writes to the registers of the transmitter are written in
a synchronized way. That is, the device driver and the transmitter
never writes to a register simultaneously (RESET, TRANSMIT, TEAR-
DOWN, and the same field of the same buffer descriptor; e.g. the device
driver and the transmitter never writes BD_OWN][2] in the same transi-
tion).

Describe both formally (perhaps by means of if-then-else statements)
and informally (in natural language):

e How the scheduling is modeled (when what part is making
an operation; see the second bullet in Section 4.4, Step 4).

e The principle of how simultaneous writes are detected.

e The CTL formula(s) for checking that all writes to the trans-
mitter registers are performed in a synchronized way. Moti-
vate the correctness of the CTL formulas.

Verify in NuSMYV that no misqueue condition can occur. Spec-
ify the CTL formulas and motivate their correctness

5 Grading

The grades are given as follows:

E Do steps 1-8 (Sections 4.1 through 4.8) and write a report with answers
to all tasks given in those steps, including pseudocode, tables, design
decisions/motivations/explanations and CTL formulas. The NuSMV
code shall be submitted through Canvas.

13



D As E with a well-written report that is easy to read. In addition,
discuss and reflect what the meaning of the verification is. You can
consider the following aspects:

— What has actually been verified?

— What has not been verified?

— What is the accuracy of the verification?

— How could the verification be made more accurate?
— How reliable is the verification?

How could the verification be made more reliable?

— What relevant aspects/properties might be desirable to verify
or to take into account in the verification (abstraction level of
the model) that are not taken into account in the verification
(abstracted away)?

— What is of practical importance in construction of models?
— What was most difficult?

— Did you find any bugs in your model or device driver design? In
such a case, what was the bug(s)?

— You are encouraged to discuss and reflect over other aspects as
well.

C As D but in addition do step 9, Section 4.9, and include the corre-
sponding answers in the report.

14



