
DD2452 Formal Methods

Lab 1: Deductive Verification of an ABS Controller

Jonas Haglund

September 20, 2018

1



1 Introduction

In this lab, you will use the WP plugin of Frama-C to formally verify a C
program controlling an anti-lock braking system (ABS) of a car. ABS is a
safety system used in cars, motorcycles, trucks and airplanes to prevent the
wheels from locking under braking, which would otherwise make the vehicle
difficult to control. The purpose of ABS is to optimize braking distance and
retain steerability and stability of the vehicle.

Section 5 explains your tasks. Sections 2 and 3 explain the algorithm
the C program implements and are not necessary to read. Section 4 gives a
brief overview of the structure of the C program (which contains explaining
comments) and might be good to read.

2 Organization and Workings of an ABS system

The braking system in a car is organized roughly as a chain as follows:

1. The braking pedal is connected to the master cylinder.

2. The master cylinder is connected to the hydraulic modulator.

3. The hydraulic modulator is connected to the brake circuits (there are
two brake circuits for safety reasons if one would fail: one for the front
wheels and one for the rear wheels).

4. The brake circuits are connected to the brake calipers.

The master cylinder converts the mechanical force on the braking pedal
to a proportional hydraulic force, by forcing brake fluid into the hydraulic
modulator.

The hydraulic modulator increases, holds or decreases the brake pressure
by controlling the amount of brake fluid in the brake circuits by opening
and closing the inlet and outlet valves. When the inlet valve is open/closed,
brake fluid is passed/not passed into the brake circuit. When the outlet
valve is open/closed, brake fuild is pumped/not pumped out of the brake
circuit into the master cylinder reservior. Hence, the hydraulic modulator
controls the brake pressure as follows:

• Increasing brake pressure: The inlet vavle is open and the outlet vavle
is closed. This results in the driver controlling the brake pressure.

• Holding brake pressure: Both valves are closed, resulting in constant
brake pressure, irrespectively of how hard the driver pushes the brak-
ing pedal.

• Decreasing brake pressure: The inlet vavle is closed and the outlet
vavle is open, resulting in the braking pedal having no influence on
the braking of the car.

2



The brake fluid in the brake circuits causes a hydraulic force to press the
brake pads in the calipers against the brake disk.

The ABS mechanism is implemented by the electronic control unit (ECU).
In order for the ECU to control the brake pressure, the ECU is connected
to the hydraulic modulator and continously sends a control signal to the
hydraulic modulator of what the state of the valves shall be. To compute
the control signal the ECU makes use of the following three sensors:

• Braking pedal sensor: Records the mechanical force on (or the dis-
placement of) the braking pedal.

• Wheel angular velocity sensors: Records the rotational velocity of the
wheels.

• Vehicle acceleration sensor: Records the change in velocity of the ve-
hicle.

The ECU minimizes the braking distance by means of a concept called
wheel slip ratio, defined as follows. A wheel is freely rolling when no braking
nor driving torque is applied to the wheel. When a wheel is freely rolling
its angular velocity is ω0 = v/R where v is the velocity of the car and R
is the radius of the wheels. When a braking torque is applied to a wheel,
the wheel starts to slip and its angular velocity ωt decreases: ωt < ω0. The
wheel slip ratio (ω0−ωt)/ω0 gives an indication of the amount of wheel slip.
If the wheel is locked, ωt = 0, then the wheel slip ratio is at maximum one.
If the wheel is slipping just a bit, ωt ≈ ω0 and the wheel slip ratio is close
to zero. The relationship between wheel slip ratio and the optimal braking
distance depends on the velocity of the vehicle and surface conditions (wet
or dry). Usually the optimal wheel slip ratio Sref ranges between 0.10 and
0.60.

3 An Intelligent ABS Algorithm

The goal of the ABS controller in the ECU is, under braking, to keep the
actual wheel slip S = (ω0−ωt)/ω0 as close to Sref as possible (where Sref ∈
[0.10, 0.60] depending on surface conditions and velocity). For simplification
the ABS algorithm controls the braking of only one wheel. Sref is defined
to be 0.15: Sref = 0.15.

Input to the algorithm is:

• Braking pedal pushing indicator: Instead of the braking pedal sensor
mentioned above that records mechanical force on or displacement of
the braking pedal, a ”braking pedal pushing indicator” is used which
returns 1 if the braking pedal is pushed and 0 otherwise.

3



• Wheel angular velocity sensor: Records the rotational speed ωt of the
wheel in radians/s.

• Vehicle acceleration sensor: Records the acceleration av of the car in
m/s2.

Output of the algorithm is a control signal uc to the hydraulic modulator.
The hydraulic modulator reacts to the control signal uc as follows:

• uc > 0.15: The hydraulic modulator increases the brake pressure by
opening the inlet valve and closing the outlet valve.

• uc < −0.15: The hydraulic modulator decreases the brake pressure by
closing the inlet valve and opening the outlet valve.

• Otherwise: The states of the inlet and outlet valves are unchanged.

It can be assumed that the ABS algorithm is invoked once every 20 ms
(a timer can be configured to raise one interrupt every 20 ms, and at each
interrupt the ABS algorithm is invoked). The ABS algorithm considered
in this lab is a combination of PID (Proportional, Integral, Derivative) and
intelligent control.

PID is a common control method based on calculating the error of previ-
ous control signals (in this context, the difference between the actual wheel
slip ratio S and the optimal wheel slip ratio Sref ). The proportional, in-
tegral and derivative components are used, respectively, to proportionally
correct the control signal, correct accumulated errors over time, and correct
the current error.

The intelligent control part is based on fuzzy logic, a successful control
method suitable for handling non-linear behaviors, braking in this context.
Fuzzy logic works basically as follows. Given inputs i = (i1, ..., in), a set of
rules is applied on i. Each rule Rm has the form: if Pm(i) then µm(i). The
meaning of such a rule is: if Pm(i) is true, then compute the membership
function µm applied on i: µm(i). 0 ≤ µm(i) ≤ 1 gives an indication of the
degree to which i is in a certain set. µm(i) = 0 means that i is not in the
set, µm(i) = 1 means that i is definitively in the set, and 0 < µm(i) < 0
means that i is in the set to a certain degree. In this context i = (e, e′),
where e = S − Sref is the error and e′ is rate of change of the error, and
one of the sets considered is whether e and e′ are zero. Those µm(i) that
have been computed, depending on whether the corresponding Pm(i) are
true, are then used to compute the final output (the control signal uc in this
context).

The PID part of the algorithm computes e = S − Sref and e′ = (S −
Sprevious)/∆t, where S is the most recent computation of the actual wheel
slip, Sprevious is the wheel slip computed by the previous invocation of the
algorithm, and ∆t = 0.020 s. Recall ω0 = v/R (where v is the speed

4



of the vehicle and R is the radius of the wheels) and S = (ω0 − ωt)/ω0.
These two equations give S = (v/R−ωt)/(v/R). Multiplying the right side
by R/R = 1 gives S = (v − ωtR)/v. The velocity of the vehicle can be
computed by integrating over the acceleration a over time and adding the
velocity v0 = ωtR of the vehicle when the braking started (at which time ωt

is the angular velocity of a freely rolling wheel): v =
∫
a dt+ v0.

The fuzzy logic part of the algorithm computes the final control signal
uc to the hydraulic modulator by means of e, e′, and the following set of
rules:

µNB(x) =


1 if x ≤ −1

−2x− 1 if − 1 < x < −0.5

0 if − 0.5 ≤ x

µNM (x) =


0 if x ≤ −1

2x+ 2 if − 1 < x ≤ −0.5

−4x− 1 if − 0.5 < x < −0.25

0 if − 0.25 ≤ x

µNS(x) =


0 if x ≤ −0.5

4x+ 2 if − 0.5 < x ≤ −0.25

−4x if − 0.25 < x < 0

0 if 0 ≤ x

µZE(x) =


0 if x ≤ −0.25

4x+ 1 if − 0.25 < x ≤ 0

−4x+ 1 if 0 < x < 0.25

0 if 0.25 ≤ x

µPS(x) =


0 if x ≤ 0

4x if 0 < x ≤ 0.25

−4x+ 2 if 0.25 < x < 0.5

0 if 0.5 ≤ x

µPM (x) =


0 if x ≤ 0.25

4x− 1 if 0.25 < x ≤ 0.5

−2x+ 2 if 0.5 < x < 1

0 if 1 ≤ x

µPB(x) =


0 if x ≤ 0.5

2x− 1 if 0.5 < x < 1

1 if 1 ≤ x

5



where x is either e or e′. The membership functions have a triangular shape
and state the degree to which e and e′ are considered to be very negative
(negative-big, NB), moderately negative (negative-medium, NM), slightly
negative (negative-smallm, NS), zero (ZE), slightly positive (positive-small,
PS), moderately positive (positive-medium, PM), and very positive (positive-
big, PB).

The membership functions give a weight of what value the control signal
uc should have for the sets NB, NM, NS, ZE, PS, PM and PB. The control
signal uc to the hydraulic modulator is then calculated by means of the
product-sum inference method:

uc =

∑
i,j µi(e) · µj(e′) · ui,j∑

i,j µi(e) · µj(e′)
,

where i and j ranges over the set {NB, NM, NS, ZE, PS, PM, PB}, and ui,j
is the control signal that is appropriate when for i and j. ui,j is derived as
follows (recall S = (v − ωtR)/v, e = S − Sref , and e′ = (S − Sprevious)/∆t).
Consider the desired behavior of the brakes for the possible ranges that e
and e′ can be in:

• NB:

– e is very negative: This means that the wheel slip is far below
optimal and that the wheel velocity is far too high. The wheel
slip is increased by greatly increasing braking.

– e′ is very negative: This means that the wheel slip is decreasing
fast, either towards or away from the optimum Sref .

• NM:

– e is moderately negative: The wheel slip is significantly below
optimal, and the wheel velocity is too high. The wheel slip is
increased by increasing the braking.

– e′ is moderately negative: The wheel slip is decreasing at a mod-
erate rate, either towards or away from the optimum.

• NS:

– e is slightly negative: The wheel slip is slightly below optimal,
meaning that the wheel velocity is a bit to high. The wheel slip
is increased by lightly increasing the braking.

– e′ is slightly negative: The wheel slip is decreasing slowly towards
or away from the optimum.

• ZE:

6



– e is zero: The wheel slip is optimal. No change in braking is
needed.

– e′ is zero: The wheel slip is constant.

• PS:

– e is slightly positive: The wheel slip is slightly above optimal,
meaning that the wheel velocity is a bit too low. The wheel slip
is decreased by lightly decreasing the braking.

– e′ is slightly positive: The wheel slip is increasing slowly towards
or away from optimum.

• PM:

– e is moderately positive: The wheel slip is significantly above the
optimum with the wheel velocity being too low. The wheel slip
is decreased by decreasing the braking.

– e′ is moderately positive: The wheel slip is increasing at a mod-
erate rate towards or away from optimum.

• PB:

– e is very positive: The wheel slip is far above optimum with wheel
velocity being far too low. The wheel slip is greatly reduced by
no braking.

– e′ is very positive: The wheel slip is increasing fast towards or
away from optimum.

The values of the control signal uc are in the interval [-1, 1] and can be
considered to have the following meanings when interpreted by the hydraulic
modulator:

• uc = 1: Increase brake pressure as much as possible.

• uc = 2/3: Increase brake pressure moderately.

• uc = 1/3: Increase brake pressure by a small amount.

• uc = 0: No change.

• uc = −1/3: Decrease brake pressure by a small amount.

• uc = −2/3: Decrease brake pressure moderately.

• uc = −1: Decrease brake pressure as much as possible.

With the desired behavior of the brakes depending on the values of e
and e′ and the interpretation of uc, ui,j is defined as follows:

7



ue,e′
e′

NB NM NS ZE PS PM PB

e

NB 1 1 1 1 2/3 1/3 0
NM 1 1 1 2/3 2/3 0 -1/3
NS 1 2/3 2/3 1/3 0 -1/3 -2/3
ZE 1 2/3 1/3 0 -1/3 -2/3 -1
PS 2/3 1/3 0 -1/3 -2/3 -2/3 -1
PM 1/3 0 -2/3 -2/3 -1 -1 -1
PB 0 -1/3 -2/3 -1 -1 -1 -1

For instance, when e ∈ NM and e′ ∈ PS, then the appropriate control
signal is 2/3. That is, the brake pressure should increase by a moderate
amount. Also, for simplification, the verification does not need to deal with
arithmetic overflows.

4 Structure of the C Program to Verify

You are given a C program, called tabs.c, implementing the algorithm ex-
plained in sections 2 and 3. The most relevant variables and functions of
tabs.c are:

• signal to hydraulic modulator: Dummy variable representing the ad-
dress of the register that causes the ECU to send the written value to
the hydraulic modulator.

• wt sensor: Dummy variable representing the address of the register
used to read the angular wheel velocity sensor.

• bp sensor: Dummy variable representing the address of the register
used to read whether the brake pedal is pushed.

• at sensor: Dummy variable representing the address of the register
used to read the acceleration sensor.

• R: Global constant storing the radius of the wheels.

• delta t: Stores the number of milliseconds between interrupts and in-
vocation of the ABS software.

• acceleration sum: Global variable accumulating the acceleration sam-
ples. Used to compute the velocity of the vehicle by integration.

• velocity before braking: Global variable storing the velocity of the
vehicle just before braking.

• md(index, x): Function implementing the membership functions used
to compute the degree to which x is in the set represented by index

8



(index = 0 = NB, index = 1 = NM, index = 2 = NS, index = 3 =
ZE, index = 4 = PS, index = 5 = PM, index = 6 = PB).

• compute velocity of vehicle(): Function computing the velocity of the
vehicle.

• compute wheel slip(v, wt): Function computing the wheel slip given
the current velocity v and angular wheel velocity wt.

• compute control signal(): Function computing the control signal that
shall be sent to the hydraulic modulator.

• hydraulic modulator driver(): The function the timer interrupt rou-
tine calls to update the brake pressure.

5 Tasks

Verifying programs with floating point computations with Frama-C requires
interactive theorem proving, which we will not do. Therefore all units are
multiplied by 1000 and only integer computations are performed.

Your task is to specify formally and verify in Frama-C with the WP
plugin the following properties:

• If the brake pedal is not pushed, then the brakes are not applied
(uc = −1000 = −1 ·1000, meaning that the outlet valve is open). That
is, -1000 is written to the variable signal to hydraulic modulator:

signal to hydraulic modulator = −1000.

• If the brake pedal is not pushed, then the current velocity is correctly
stored in the variable velocity before braking:

velocity before braking = wt sensor · R.

• If the brake pedal is not pushed, then the current acceleration is cor-
rectly stored in the variable acceleration sum:

acceleration sum = at sensor.

• If the brake pedal is not pushed, then S previous is assigned zero:

S previous = 0.

• The velocity is computed correctly (the first term is divided by 1000
since both factors of that term have already been multiplied by 1000):

compute velocity of vehicle() =

acceleration sum · delta t/1000 + velocity before braking.

9



• The wheel slip is computed correctly:

compute wheel slip(v, wt) = (v - wt · R/1000)/v.

• If the following three conditions hold:

– the brake pedal is pushed,

– the wheel slip is below optimal by 250 (S − Sref = e ≤ −250),
and

– the wheel slip is decreasing by 250 units per time interval ((S −
Sprevious)/∆t = e′ ≤ −250),

then brake pressure is increased (uc > 150 = 1000 · 0.15).

That is, a value greater than 150 is assigned to signal to hydraulic modulator:

signal to hydraulic modulator > 150.

In some function contracts the values of the array u must be stated
(assumed in a requires clause).

Your solution shall be tabs.c annotated with ACSL annotations such
that Frama-C verifies the properties listed above (ACSL is an annotation
language of which Frama-C implements a subset). The C code in tabs.c
must not be modified. In addition, write a succinct report containing at
least the following:

1. Your thoughts about the difficulty of the lab.

2. Annotation overhead (number of lines and number of goals to be
proved).

3. How did you familiarize yourself with the code? Testing? Reading?

4. Your logical verification approach (your reasoning before you anno-
tated the code).

5. How did you annotate the code? Did you rewrite the code into a sim-
pler equivalent form and annotating that form, and then working your
way back to the original code by making small stepwise modifications
of the simpler code and its associated annotations?

6. Verification time (in seconds).

7. Is there any code in tabs.c that you would rewrite in order to ease the
verification?

8. Will you write code differently in the future? Why?

10



9. What was most difficult?

10. Are there any properties that you have not verified that you think are
relevant to verify?

11. Do you see any flaws in this verification approach where only source
code is analyzed?

12. Do you see any practical limitations of what programs/properties that
can be verified with Frama-C and the WP plugin?

13. Do you see any shortcomings in the WP-plugin with respect to the
expressiveness of annotations?

14. Were there any annotations that you expected to be proved/not to be
proved but was not proved/proved in Frama-C? In such a case, what
was the assertion?

15. Have you experienced any strange behavior of (or bugs in) Frama-C?
For instance, were you forced to add a statement annotation that was
included in a requires clause?

16. The annotated code in an appendix.

These are the requirements for the grade E. For a D, the report shall
be well-written and well-structured. For a C, the requirements for E and
D must be fulfilled, and in addition the properties verified for tabs.c must
be verified for tabs loop.c. The difference between tabs loop.c and tabs.c is
that in the function compute control signal, some for loops in tabs loop.c
replace explicit additions in tabs.c.

11


