EP1100

Data Communication and Computer Networks

Gunnar Karlsson

KTH School of Electrical Engineering

Laboratory for Communication Networks

Illustrations in this material are collected from

Behrouz A Forouzan, *Data Communications* and *Networking*, McGraw-Hill.

Analog and digital signals

Signals

- Analog signals
 - Infinitely many amplitude levels
 - Continuously varying
 - Continuous in time
- Digital signals
 - Limited number of amplitude levels
 - o Discrete
 - Discrete in time

Sampling

- Sampling rate: the Nyquist theorem
 - A bandlimited signal may be sampled into a time discrete signal
 - No information loss the analog signal can be *perfectly recovered!*
 - The sampling rate must be at least twice the highest frequency of the analog signal, f_s≥2f_{max}
 - o This frequency is often called the Nyquist frequency, or Nyquist rate
 - No information is gained by sampling at a higher rate
- Named after Harry Nyquist (1889 1976) from Värmland!

Amplitude Quantization

- From continues to *discrete* sample values
 - rounds off the amplitude to closest quantization level
 - gives information loss, *not reversible*
- Binary encoding of quantization levels
 - represent each amplitude with a codeword of bits
 - examples: $0 \rightarrow 0000$, $+25 \rightarrow 0001$, $+50 \rightarrow 0010$, ... $-25 \rightarrow 1001$, $-50 \rightarrow 1010$, ...

Pulse code modulation (PCM)

- Sampling and quantization
 - digitalization of continuous signals
- Sampling of signal
 - A given sampling frequency and signal bandwidth
 - Analog signal is filtered to stay within specified frequency band
 - Signal levels represented by a fixed number of bits
 - Mapping of sample value to and from quantization level
 - From electric signal level in volts to a numbered level (no unit)
 - Representation of quantization level in bits
 - for example: 8 bit sample values: -127 to 127 quantization levels
- Bit rate of digital signal [b/s]
 - sampling frequency [1/s] × bits per sample [b]
 - Larger units
 - kilo (k) 10³, mega (M) 10⁶, giga (G) 10⁹, tera (T) 10¹², peta (P) 10¹⁵, exa (E) 10¹⁸, zetta (Z) 10²¹, yotta (Y) 10²⁴, ...

	<i>Sample rate (kHz)</i>	<i>Sample size (bits)</i>	Bit rate (kb/s)
Telephony	8	8	64
CD	44.1	16	706*
DVD Audio	44.1, 48, 88.2, 96, 176.4, 192	16, 20, 24	4608* (max)

* Per channel

Transmission and data communication

Transmission

- Basis of data communication
- Transmission media
 - Attenuation and link budget
 - Signal distortion
 - Capacity limitations
- Modulation and line coding
- Synchronization and framing
- Multiplexing
- Capacity requirements
- Examples—TDM, ADSL

Basis of data communication

- Communication based on propagation of electromagnetic signals
 - Forming the signal into well—defined waveforms
 - Assigning bit values to each waveform
 - Sending data by the signal with waveforms selected by the data
- Signal propagated through a medium (or vacuum)
- Receiving the signal and detecting the waveforms
 - Mapping the waveform back to data bits
 - Handling errors that might occur

Transmission media

Transmission Media

- Guided media
 - For electrical and electromagnetic signals
 - Twisted pair cable
 - Coaxial cable
 - For optical signals
 - o Single-mode and multimode fiber
- Unguided media
 - Electromagnetic waves in air
 - o Radio
 - Microwaves (terrestrial and satellite)
 - o Infrared

Transmission Quality—Attenuation

$10 \log_{10} P_{in}/P_{out}$

- No link is perfect
 - Power loss between sender and receiver
 - Relationship between incoming and outgoing power
 - Measured in decibel [dB] (from deci-Bell)
 - Example:
 - $P_{in} = 120 \text{ mW}$
 - $P_{out} = 30 \text{ mW}$
 - Attenuation = 10 $\log_{10} 4 \approx 6 \text{ dB}$

Power and Sensitivity

- Convenient to count in dB
 - For instance, halving power is equivalent to -3 dB
 - Represent power levels in relation to a reference power level
 - o 0 dB means power is same as the reference level
 - Used for transmitter output power and receiver input sensitivity
 o input power needed for reception
- Measured in "decibel watt" dBW or "decibel milliwatt" dBm
 - $\bullet \quad P_{dbW} = 10 \log_{10} P$
 - $P_{dBm} = 10 \log_{10} P/1 \times 10^{-3}$
- Note: these are *absolute* power measures!

Transmission Quality—Distortion

- Each frequency component has its own speed through the medium
 - Adds up differently at the receiver
 - Signal changes form or shape
- Frequency dependent attenuation
 - *Low pass* attenuates higher frequencies more than lower ones
 - *High pass* attenuates lower frequencies more than lower ones
 - Band pass attenuates frequencies at both ends of spectrum

Transmission Quality— Added Noise

- Undesired signal added to the transmitted signal
- Thermal noise
 - Random motions of electrons
 - Independent of signal frequency and amplitude
 - White noise contains all frequencies at equal power

- Signal-to-noise ratio, SNR
 - S/N, where S is signal power, N is noise power
 - Measured in decibel

Transmission Quality—Counter Measures

- Amplification
 - Compensates for attenuation
 - Amplifies added noise as well as signal; adds its own noise
- Regeneration (for digital signals)
 - Recreates the shape of the signal
 - Cleans off noise, makes occasional errors
 - Composed of a signal receiver followed by a transmitter
- Noise filters
 - Filter out unused parts of channel bandwidth
- Protection against distortion
 - Equalizers
 - Dispersion compensation
 - Can attenuate the signal along with the noise
- Protection against disturbances and crosstalk ("överhöring")
 - Crosstalk: signals from adjacent cables leak into one another
 - Protection by reducing leakage
 - For example shielding against electromagnetic fields

Guided Media

- Wires, cables
- Twisted pair cables
- Coaxial cables
- Optical fibers

Twisted Pair Cable

- Separately insulated
- Pair of cables twisted together
 - Reduce external disturbances
 - Receiver operates on signal differences

Twisted Pair Cable

- Several pairs bundled together
- Often with 8P8C connector (akin to RJ-45)
- Often installed in building when built
- Shielded (STP) and unshielded (UTP)
 - Shielding protects from external noise and crosstalk
 Bulkier and more expensive

Cathegories of Unshielded Twisted Pair

	Bandwidth [MHz]	Bit rate [Mb/s]	Use
CAT 1	Very low	< 0.1	Telephone, doorbell
CAT 2	<2	4	E-1 and T-1, token Ring
CAT 3	16	16	10Base-T, 100 Base-T4, 100 Base-T2
CAT 4	20	20	16 Mb/s Token Ring
CAT 5	100	100	100Base-T
CAT 5e	100	350	100Base-T
CAT 6	250	550-1000	1000Base-T
CAT 7	600	700-1000	1000Base-T

Coaxial Cable

- Solid inner connector
- Outer connector is braid or metal foil
- Separated by insulating material
- Higher bandwidth than twisted pair
- Low crosstalk

Optical Fiber

- Core of silica glass or plastic
- Cladding with lower index of refraction
 - Mirrors the light signal in the core
 - Reflection depends on angle of incidence
- Light emitting diode (LED) or laser diode as light source

Fiber transmission modes

Multi-mode fiber

- Measure is loss (in dB) per kilometer of fiber
 - Typical value is 0.3 dB/km for single-mode silica glass
- Wavelength $\lambda = c/f$
 - *c* is propagation speed, *f* is frequency
 - speed of light is around 2×10⁸ [m/s] in fiber

Fiber Advantages and Disadvantages

- Advantages
 - Very high bandwidth
 - Low attenuation
 - No crosstalk: no interference between photons
 - Not sensitive to electromagnetic noise
 - Low weight per meter of cable
- Disadvantages
 - Installation
 - To pull the cable (no sharp bends for instance)
 - Connecting cable segments together by wielding
 - Adding connectors
 - Maintenance and repair

Propagation Methods for Unguided Signals

Radio Waves

- Radio, television
- Signal frequencies of up to 1 GHz
 - Signal passes through most obstacles
 - o walls, vegetation
- Ground and sky propagation
- Omnidirectional antennas
 - High towers for line of sight
 - Eg, Kaknästornet, Nackamasterna

	Omnidirectiona antenna	al

Microwaves

- Signal frequencies of 1-300 GHz
 - Signal attenuated by obstacles, water and more
 - Signals behave more like light at higher frequencies
- Cellular phones, satellite networks, wireless LANs
- Line of sight propagation
- Unidirectional antennas for point-to-point
- Omnidirectional for mobile and broadcast communication

Infrared

- Light signals of frequencies 300 GHz 400 THz
 - Non-visible part of light spectrum
 - Heat radiation
- Line-of-sight propagation
 - Reflections can be used to pass obstacles
- Interference from sun rays
- Short distances
 - Commonly used for remote controls

Bandwidths for different media

Transmission capacity

Capacity

- Bandwidth of a transmission medium
 - Difference between highest and lowest frequency of signals that may be transmitted through the medium
 - Limits the channel's ability to carry data
- Transmission capacity
 - Indicates how much data can be transmitted per second
 - Measured in bits per second [b/s, bit/s, bps]
- Increased bandwidth can give higher capacity
 - A noiseless analog channel has infinite capacity
 - Noise is therefore the main limiter of the capacity

Bit Rate and Baud Rate

- Transmission capacity: number of bits per second (bit rate)
- Baud rate: number of signal elements per second
 - signal elements are forms used to represent data
 - the more signal elements, the less different they can be
 - o easier to misinterpret signal elements at receiver

$$C_{max} = 2B \log_2 L$$

- Also Nyquist's/Hartley's Law
- Nyquist bit rate C_{max} is the maximum bit rate on an ideal channel
 - So maximum baud rate is 2B
 - Capacity goes towards infinity with increasing number of signal levels

$C = B \log_2(1 + S/N)$

- Claude Shannon (1916 2001)
 - "Father of information theory"
- Highest possible bit rate in a channel with white noise
 - B is channel bandwidth
 - S/N is signal to noise ratio (not in dB!)

- Example
 - *B* = 3400 300 = 3100 Hz
 - S/N = 20 dB = 100 times
 - $C = 3100 \log_2(1 + 100) = 20.6 \text{ kb/s}$
 - What about ADSL modems?

Transmission of data

Analog and Digital Signals

Line coding (baseband modulation)

- Turn binary data into a transmission signal Line 01011101 coding Discrete amplitude levels Transition between levels at discrete times o clocking Signal is constant between transition times Transmission effect Uses full bandwidth of channel ... 5f9f11f7f13f3fnf Spectrum of transmission a. Frequency spectrum of a square wave signal (square wave) is infinite Lowpass channel limits high frequency part of signal
 - Received signal "smoothed" at transitions

b. Frequency spectrum of an approximation with only three harmonics

5f

3f

Unipolar Encoding

• Two signal levels

- Zero level and positive level (or negative, but not both)
- Contains DC component (0 Hz frequency)
 - Average level of the signal (depends on rate of 1s in data)
 - Require cable with lowpass channel
- Lack of synchronization (clocking information)
 - Long sequences of all ones or all zeros may cause receiver to loose synchronization

Nonreturn to Zero (NRZ)

• Bi-polar signal (two levels)

- Average signal level reduced
- Synchronization may still a problem

Return to Zero (RZ) Encoding

- Three levels: positive, negative and zero
 - Always return to zero before next transition up or down
- Synchronization even for long strings of 1s or 0s
- Two signal-changes per bit—more bandwidth

Manchester Encoding

- Two signal levels
 - Always transition in middle of interval
- Higher pulse rate requires larger bandwidth

Differential Manchester Encoding

• Need only detect "transition" or "no transition"

- Bit stream is divided into *m*-bit groups
- Groups are encoded as n-bit codes
 - 4B/5B: 5-bit codes represent 4-bit groups
 - 8B/10B: 10-bit codes represent 8-bit groups
- Select the *n*-bit codes smartly
 - Sufficient number of 1s in each codeword
 - *n*-bit codes transmitted by some line coding, eg NRZ

Modulation

- Sine wave fully described by amplitude A, frequency f and phase f
 - $s(t) = A \sin(2\pi f t + \phi)$
- Vary one (or more) to represent symbols

Amplitude Shift Keying (ASK)

- Signal level is varied to represent symbols
- Amplitude sensitive to noise and attenuation

Frequency Shift Keying (FSK)

- Signal frequency is varied to represent symbols
- Bandwidth limitations

Phase Shift Keying (PSK)

- Signal phase is varied to represent symbols
- Limited by receiver's ability to detect phase changes

4-PSK (Q-PSK)

- Four different phases
- Each phase represents two bits

Qadrature Amplitude Modulation (QAM)

- Combination of ASK and PSK
 - Allows for more combinations—more bits per baud
- Maximum contrast between signal units

Data Transmission Modes

Parallel Transmission

- High capacity (or lower clock rate)
- Requires multiple cables or wider cables

Serial Transmission

- Need for synchronization at bit level
 - External clock, such as GPS
 - Separate link for clock signal
 - Line coding with embedded clock
 - Manchester coding, for example
 - Receiver resynchronization

Framing of messages

- Sender might run out of data
 - Intermittent data source
- Receiver interprets incoming signal
 - Only noise if there is no transmission
 - Noise signal taken as data
- Solution: Framing
 - Mark start and stop of message
 - Added control (protocol) data per message
 - Allows multiplexing of messages from multiple sources
 - o Separate frames from each source
 - o Division of a frame for multiple sources

Multiplexing

Multiplexing

- Subdivision of a link into multiple channels
 - Multiple sender/receiver pairs can share a link
- Resource sharing
 - Bandwidth divided into frequency channels
 - Transmission time divided into time slots

Multiplexing

- Analog multiplexing
 - Frequency division multiplexing (FDM)
 - Multiple frequency channels
 - o Bandpass modulation
 - TV and radio broadcast
 - Wavelength division multiplexing (WDM)
 - Similar to FDM for optical transmission
- Digital multiplexing
 - Time division multiplexing (TDM)
 - Access according to time slots
 - Synchronous TDM
 - o Statistical TDM
 - Asynchronous TDM

Time division multiplexing for telephony

- Carries PCM voice channels
 - T1 (North America, Japan)
 - o 24 channels, 1.544 Mb/s
 - E1
 - o 30 channels, 2.048 Mb/s

Synchronous Time Division Multiplexing

- Access according to time slots
- Time slots grouped into frames
- If n is the number of inputs, the output link needs to be n times faster than each input link
- Frame duration is the same as the duration of a data unit on the input

Hierarchical Multiplexing

E Line Rates

E Line	Rate (Mbps)	Voice Channels
E-1	2.048	30
E-2	8.448	120
E-3	34.368	480
E-4	139.264	1920

Example: Digital Subscriber Link (DSL)

- High-speed Digital Access to Internet
- Exploit the actual bandwidth available in twisted pair cables in subscriber access lines (local loop)
 - Up to 1.1 MHz
 - Subject to strict physical limitations
 - o Cable distance
 - Size of cable
 - o Signaling

Asymmetrical DSL (ADSL)

- Bandwidth (typically) divided into 4 kHz channels
 - Adaptive: bandwidth and data rate depends on conditions
- Lower rate in upstream direction (from subscriber)
 - For residential access
 - Upstream 64 kb/s to 1 Mb/s, Downstream 500 kb/s to 8 Mb/s

Discrete Multitone Technique (DMT)

- Combination of QAM and FDM
- 4 kHz channels and 15 bits/baud ⇒ 60 kb/s channels

Summary

- Transmission media
 - Link budget
 - Capacity limitations
- Transmission of digital information
 - Line coding
 - Digital modulation
- Transmission of analog information
 - Conversion to digital signals
 - Sampling
- Synchronization
- Multiplexing
- Examples
 - PCM
 - ADSL