

Problems for Seminar 2

Check the canvas page of the course for information on how seminars are run and what you are expected to do before and during the seminars.

Start by doing the simpler recommended exercises from the book:
1.1: A1, A5, A8, A9
1.3: A2, A5, A7, A9
1.4: A1, A5, A6
1.5: A1, A3, A4, A5, A6

The seminar starts with a test. The problem will be about computing distances between points, lines, or planes.

In the seminar, the following problems will be discussed.
Problem 1. The points P, Q, and R have coordinates

$$
P=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \quad Q=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \quad R=\left[\begin{array}{c}
4 \\
6 \\
-1
\end{array}\right]
$$

and the plane Π is given by the equation

$$
2 x-y+2 z=3 .
$$

(a) Compute a parameter form for the line L through P and Q.
(b) Does the line L contain the point R ?
(c) Determine the intersection of Π and L.
(d) Compute an equation for the plane which is orthogonal to L and contains P.

Problem 2. For each number t, we are given a triangle T with vertices

$$
A=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad B=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right] \quad \text { and } \quad C=\left[\begin{array}{l}
t \\
t \\
1
\end{array}\right] .
$$

(a) For which value of t is T right-angled at A ?
(b) Compute the other two angles for this value of t (use a calculator).
(c) Compute the area of T for $t=3$.
(d) Find a value for t such that the point C is closest to A.

Problem 3. The line L_{1} passes through the points A_{1} och B_{1}, and the line L_{2} through the points A_{2} och B_{2}, where

$$
A_{1}=\left[\begin{array}{c}
-4 \\
3 \\
0
\end{array}\right] \quad B_{1}=\left[\begin{array}{c}
-3 \\
6 \\
1
\end{array}\right] \quad A_{2}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] \quad B_{2}=\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]
$$

(a) Find a parameter form and an equation for the plane Π which contains L_{2} and is parallel with L_{1}.
(b) Explain why the shortest distance d between the lines L_{1} and L_{2} equals the distance between the plane Π and the point A_{1}, and compute it.
(c) Compute the image P of A_{1} under the orthogonal projection onto the plane Π.
(d) Find numbers λ and μ such that $P=A_{2}+\lambda\left(B_{1}-A_{1}\right)+\mu\left(B_{2}-A_{2}\right)$. Show that the points $C_{1}=A_{1}+\lambda\left(B_{1}-A_{1}\right)$ and $C_{2}=A_{2}+\mu\left(B_{2}-A_{2}\right)$ are points on L_{1} and L_{2}, respectively, and that they have distance d from each other.

Problem 4. The points A, B, C, D are given by

$$
A=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \quad B=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right] \quad C=\left[\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right] \quad D=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

(a) Find a normal vector to the plane Π_{1} which contains the origin, A, and B; and a normal vector to the plane Π_{2} containing B, C, and D.
(b) Find a parameter form for the line of intersection of Π_{1} and Π_{2} using the cross product of the normal vectors.
(c) Spell "parallelepiped".
(d) Compute the volume of the parallelepiped spanned by $\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}$.

Miscellaneous

Here are some other topics that are important and interesting to discuss.

- Comments on Seminar 1: Anything that was unclear (theory, grading)?
- How many equations does one need to define an m-dimensional subspace of \mathbb{R}^{n} ?

How many free variables are needed in a parametric form?

- What is the relationship between projections and the notion of distance?
- What is the expected intersection between two planes in \mathbb{R}^{3}, in \mathbb{R}^{4}, and in \mathbb{R}^{5} ?

