DD2410

Lecture slides Mapping and SLAM

Localization problem a la Bayes

Prediction based on control input / odometry, uk:

$$p(x_{k+1}|Z_k,U_{k+1}) = \int p(x_{k+1}|u_{k+1,}x_k) \ p(x_k|Z_k,U_k) \ dx_k$$
 where $p(x_{k+1}|u_{k+1,}x_k)$ is the motion model often given by odometry

→ distribution smeared out (uncertainty increases)

Update with new measurement z_{k+1} :

$$p(x_{k+1}|Z_{k+1},U_{k+1}) = \eta \ p(z_{k+1}|x_{k+1})p(x_{k+1}|Z_k,U_{k+1})$$

where $\mathbf{p}(\mathbf{z_{k+1}}|\mathbf{x_{k+1}})$ is the measurement model

→distribution more peaked (uncertainty decreases)

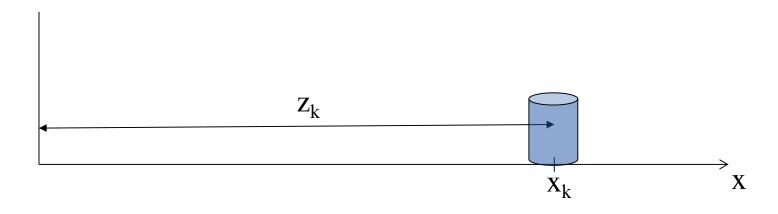
Extended Kalman Filter (EKF)

- Initialize
 - $-x_{0|0}$ = best guess about state (here pose)
 - $P_{0|0}$ = covariance ("uncertainty") in initial state guess
- Repeat
 - Predict
 - $x_{k+1|k} = f(x_{k|k}, u_{k+1})$
 - $P_{k+1|k} = A_k P_{k|k} A_k^T + W_k Q_k W_k^T$
 - Update
 - $K_k = P_{k+1|k}H_k(H_kP_{k+1|k}H_k^T + V_kR_kV_k^T)^{-1}$
 - $x_{k+1|k+1} = x_{k+1|k} + K_k(z_{k+1} h(x_{k+1|k}))$
 - $P_{k+1|k+1} = (I K_k H_k) P_{k+1|k}$

Covariance matrix (P on last slide)

- What is it?
- What does it tell us?
- Menti

Ex: EKF in 1D



•
$$x_{k+1} = f(x_k, u_{k+1}, w_{k+1}) = x_k + v_k dT + w_{k+1} (u_k = v_k = speed)$$

•
$$z_k = h(x_k, v_k) = x_k + v_k$$

•
$$A=df/dx=?$$
 $H=dh/dx=?$

$$H=dh/dx=?$$

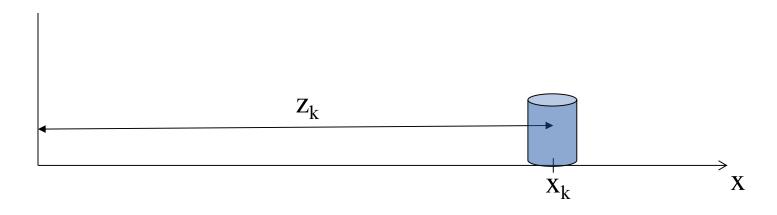
$$W_k \sim N(0,Q_k)$$

•
$$W=df/dw = ?$$
 $V=dh/dv = ?$

$$V=dh/dv=?$$

$$V_k \sim N(0,R_k)$$

Ex: EKF in 1D



•
$$x_{k+1} = f(x_k, u_{k+1}, w_{k+1}) = x_k + v_k dT + w_{k+1} (u_k = v_k = speed)$$

•
$$z_k = h(x_k, v_k) = x_k + v_k$$

•
$$A=df/dx=1$$

• W=df/dw = 1
$$V=dh/dv = 1$$
 $V_k \sim N(0,R_k)$

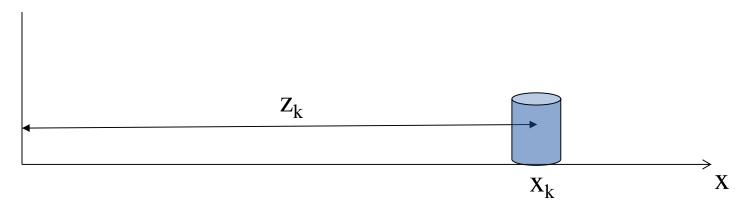
$$H=dh/dx=1$$

$$V = dh/dv = 1$$

• A=df/dx=1 H=dh/dx=1
$$W_k \sim N(0,Q_k)$$

$$V_k \sim N(0,R_k)$$

Ex: EKF in 1D



- Initialize: $x_{0|0} = x0$, $P_{0|0} = small$ (if we know the init pos)
- Predict
 - $x_{k+1|k} = x_k + v_k dT$ The noise increases the uncertainty but does
 - $P_{k+1|k} = P_{k|k} + Q_k$ not effect the mean as we assume zero-mean noise
- Update

$$-K_k = P_{k+1|k}(P_{k+1|k} + R_k)^{-1} = P_{k+1|k} / (P_{k+1|k} + R_k)$$

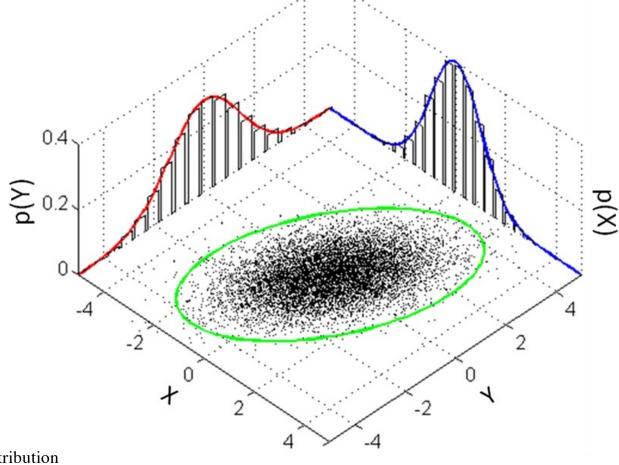
$$- x_{k+1|k+1} = x_{k+1|k} + K_k(z_{k+1} - x_{k+1|k})$$

$$- P_{k+1|k+1} = (1 - K_k) P_{k+1|k}$$

Gauss vs particle set

Green ellipse: 2D Gaussian

Black dots: Samples of the same distribution

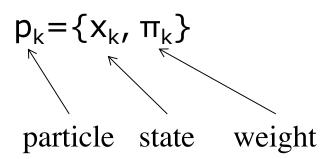


Particle filter

The particle filter represents probability distributions using a set of particles, p_k , sampled from the distribution.

Each particle represents one "hypothesis" about the state.

Each particle also has a weight, initialized as $\pi=1/N$.



Monte Carlo Localizatio (MCL)

- Initialize the particles given what you know to start with (nothing→uniform, a lot→ very small spread) and with weight 1/N.
- 2. Use odometry to update all poses of particles and perturb each particle according to odomety noise (different realization of noise for each particle).
- 3. Use measurements and multiply the weight of each particle, i, with $p(z_k|x_k^i)$
- 4. Re-sample "if needed" and then return to 2.

Mapping and SLAM

• Difference?

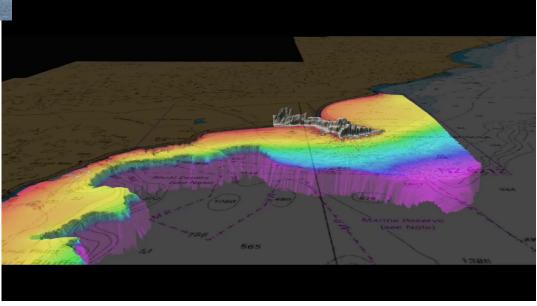
Mapping and SLAM

- Mapping
 - Position is assumed known and the focus is on building the map
- SLAM = Simultaneous Localization and Mapping
 - Neither position nor map known, need to estimate both at the same time

Example: mapping

Assignment 4!

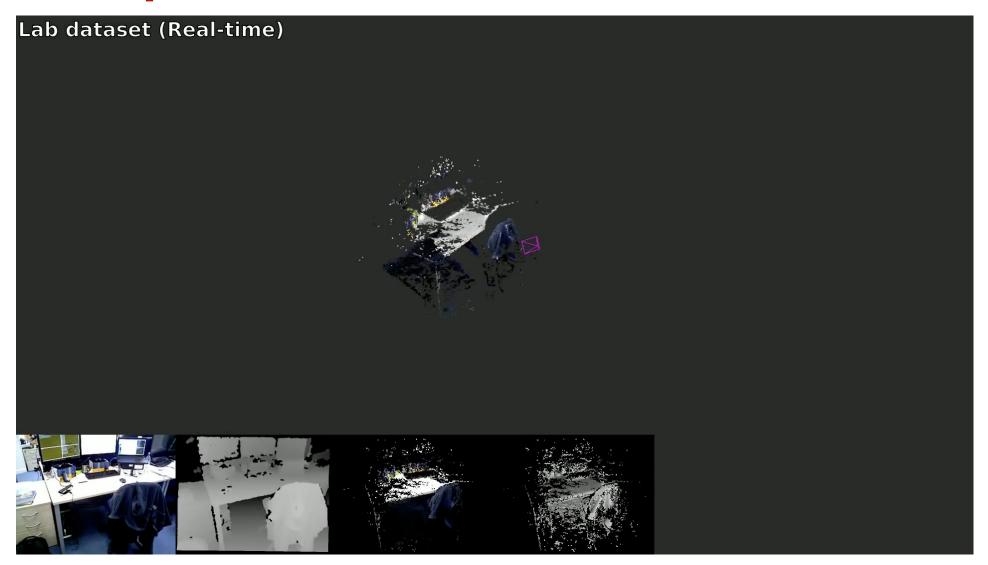
Example: mapping



SLAM Simultaneous Localization and Mapping

- Chicken and egg problem!
- Need map to localize
- Need posiotion to build map
- Do localization and mapping in parallell!

Example SLAM: Elastic Fusion



https://www.youtube.com/watch?v=XySrhZpODYs

From Localization to SLAM

How to extend EKF and PF?

Study EKFSLAM

- Extend state
- Correlation between robot pos and landmark (suggest experiment)
- Loop closure (suggest experiment)

Practical issues with EKF SLAM

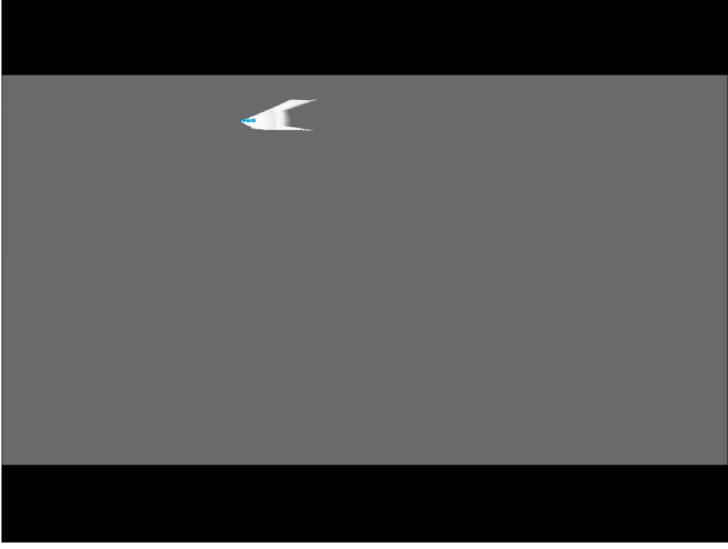
- Computational complexity O(N²) (N=nbr landmarks)
- Sensitive to outliers
- How to define landmarks? Need to know that I can find them in the environment I operate in

• ...

Particile filter SLAM

- Particle filter cannot handle the number states needed for SLAM
- Use Rao-Blackwellization!
- Factor distribution into position part and map part
 - Particle filter tracks position
 - EKF or other map technique handles map

Example: Particle filter SLAM



https://www.youtube.com/watch?v=jBPZIU6AIS0

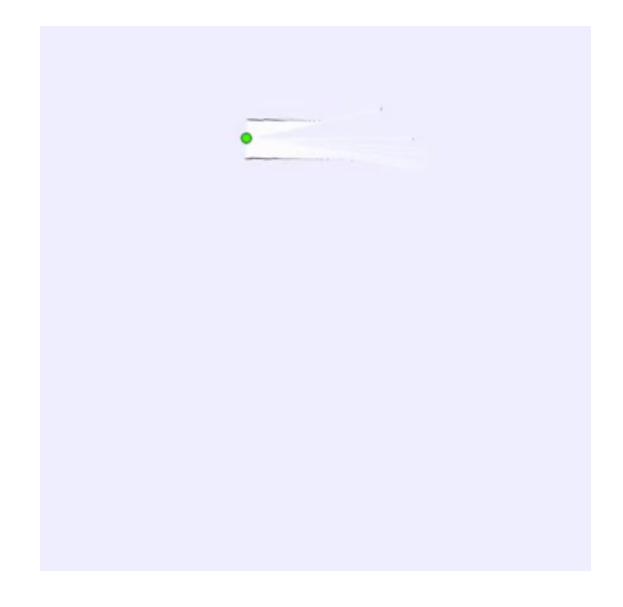
"gMapping", 2D grid-based FastSLAM

https://www.youtube.com/watch?v=uXDYc5jziag

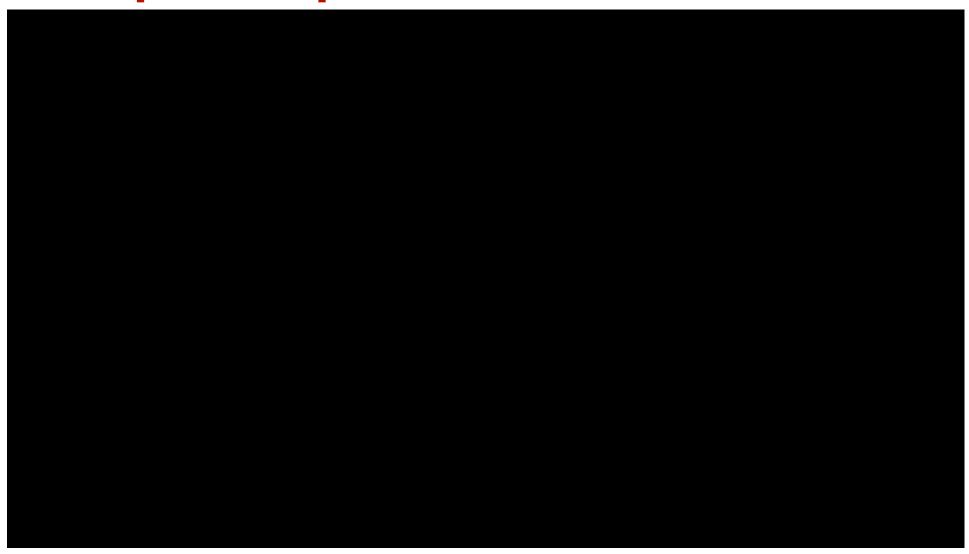
Optimization / Graph-based SLAM methods

- Used in almost all approaches now
- Idea:
 - Build a graph where
 - the nodes corresponds to robot poses and map entities and
 - edges are relative pose estimates (constraints) between nodes
 - Optimize the graph so as to minimize the "energy" in the graph
- The constraints can be seen as springs whose zero energy state corresponds to the relative pose estimate.
 - Changing the relative pose between nodes costs energy
 - The more certain the relative pose is, the stiffer the spring

Example: Graph based SLAM



Example: Graph based 3D SLAM



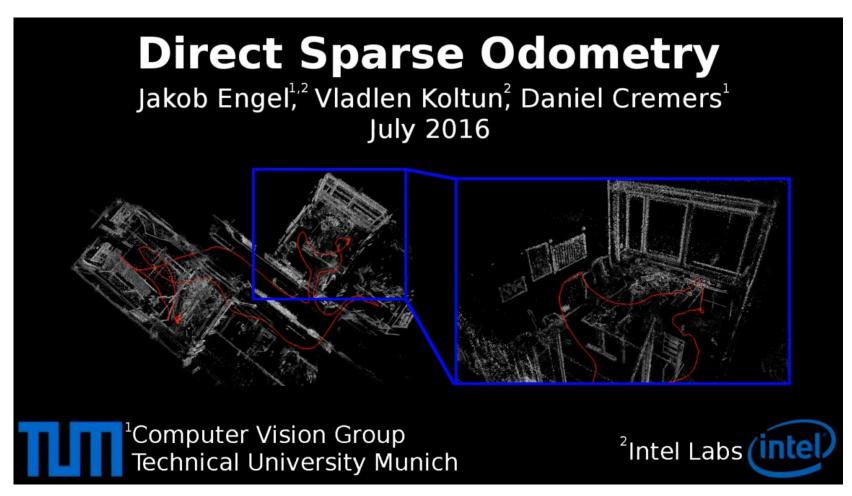
https://www.youtube.com/watch?v=08GTGfNneCI

Typical setup

- Front-end
 - Produces new nodes and edges
 - Does its best to reduce drift
 - Runs in real-time
- Back-end
 - Optimizes the graph
 - Looks for loop-closures
 - Runs in the background

Front-end

Today in research often vision based - visual odometry

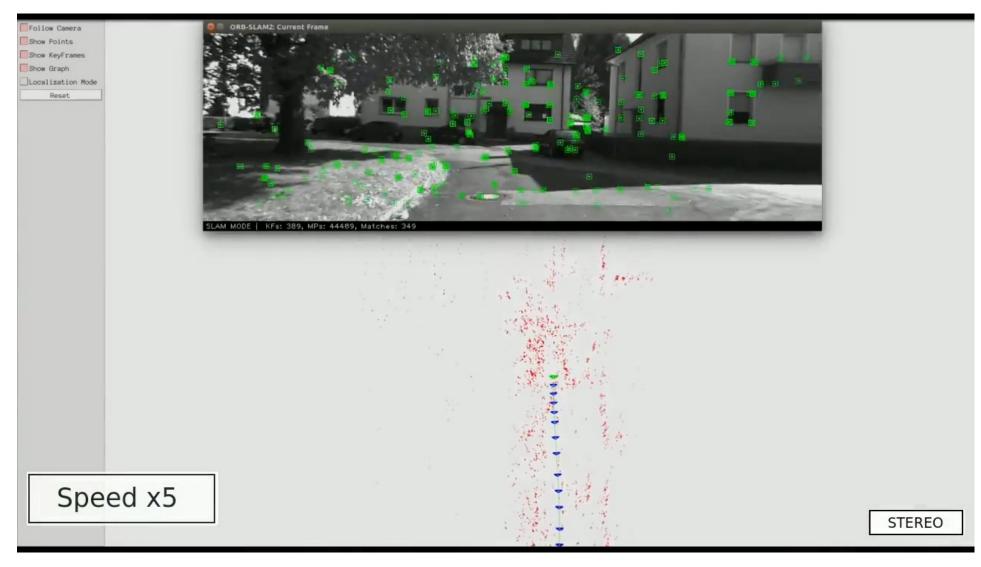


https://www.youtube.com/watch?v=C6-xwSOOdqQ

Back-end

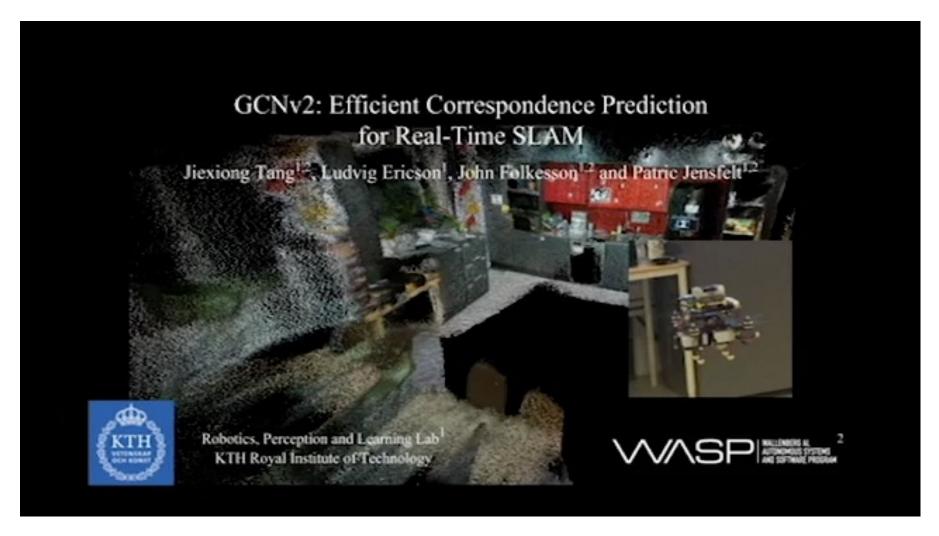
- Many packages to chose from
 - g2o (https://github.com/RainerKuemmerle/g2o)
 - gtsam (https://bitbucket.org/gtborg/gtsam)
 - Google ceres (http://ceres-solver.org)

Example: ORBSLAM2



https://www.youtube.com/watch?v=GByPKZDnG3Y

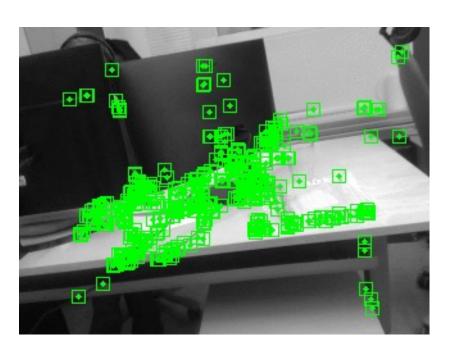
Example: GCNv2



https://github.com/jiexiong2016/GCNv2_SLAM

https://www.youtube.com/watch?v=pz-gdnR9tAM

Example: GCNv2



Notice how the GCNv2 features have a more even distribution of features than ORB Can run ORBSLAM2 with GCNv2 on Jetson TX2 https://github.com/jiexiong2016/GCNv2_SLAM

Menti and Demo

Mentimeter quiz

Try the app polycam