DD2410

Lecture slides Sensing and Perception

Why sensors?

Why sensors?

- Sensors are needed to cope with the uncertainty and provide an estimate of environment and "robot state"
- Uncertainty in the layout of the environment due to lack of models or unknown dynamics
- Execution of commands is uncertain due to imperfect actuation

Sensors on Waymo's car?

Example at CAS@KTH MetraLabs Rosie

- Odometry
- Laser
- 2 PrimeSense RGB-D
- Bumper

Proprioceptive sensor

Encoders

- Measures rotation of a joint/wheel
 - Compare speed sensor on a bike (magnet on a spoke and a sensor on the fork)
- Industrial robot equipped with encoders that give the position of the joints
- Almost all mobile robots have them on the motors to
 - Control the speed of the wheels
 - Estimate the motion of the platform

IMU

- Gyro
- Accelerometer
- Magnetometer

(Rate) gyro

- Measures rotation speed [rad/s]
- Can be used to get the orientation. How?

(Rate) gyro

- Measures rotation speed [rad/s]
- Can be used to get the orientation. How?
 - Integrate!
 - Often temperature dependent
 - Noise and changing scale/offset → angle estimates drift with time

- Measures linear acceleration [m/s²]
- Protects hard drives, activates airbags, etc.
- How to get heading? What heading?

- Measures linear acceleration [m/s²]
- Protects hard drives, activates airbags, etc
- How to get heading? What heading?
 - Detect vertical direction
 - Limitations?

- Measures linear acceleration [m/s²]
- Protects hard drives, activates airbags, etc.
- How to get heading? What heading?
 - Detect vertical direction
 - Limitations?
 - Cannot determine rotation around vertical
 - Cannot tell gravitation from acceleration
- How to get position?

- Measures linear acceleration [m/s²]
- Protects hard drives, activates airbags, etc
- How to get heading? What heading?
 - Detect vertical direction
 - Limitations?
 - Cannot determine rotation around vertical
 - Cannot tell gravitation from acceleration
- How to get position?
 - Integrate twice
 - Super sensitive to noise
 - Very important to remove gravity → need to know orientation

Compass / magnetometer

- A very old navigation tool!
- Now available in solid state technology
- Very powerful to know your heading in absolute coordinate system
- Problems?

Compass / magnetometer

- A very old navigation tool!
- Now available in solid state technology
- Very powerful to know your heading in absolute coordinate system
- Problems?
 - Many other things creating magnetic fields
 - → disturbances

IMU - Inertial Measurement Unit

- Combines accelerometers and gyros
- Often combined with magnetometers (why?)
- Now also often with GPS
- Ex: xsense.com

Study at home (OPTIONAL)

- Download and play with the SensorFusion App
 - Works only for Android so find an Android friend
 - http://www.sensorfusion.se/sfapp/
 - Download from Google Play

Scale and bias

- You typically measure a voltage (e.g. 0-5V)
- Voltage proportional to the quantity in question
- What do you need to know to go from voltage to your quantity?

Scale and bias

- You typically measure a voltage (e.g. 0-5V)
- Voltage proportional to the quantity in question
- What do you need to know to go from voltage to your quantity?
 - Scale factor for e.g. m/s² to voltage
 - Bias (offset) i.e. voltage for 0 output

Range sensors

- Several principles
 - Time of flight
 - Triangulation
 - Phase difference
 - Intensity
 - _

Time of flight (TOF)

- Measure travel time
- Speed of propagation, c, distance d and time t
 → d=ct
- Travels back and forth, i.e. time for two trips
 → d = ct/2
- Speed in air
 - Sound: 344m/s at 20°C
 - Light: 299,792,458 m/s

Ultrasound

- Send out sound pulse and measure time until it comes back (like a bat!)
- Problems?

Ultrasound

- Send out sound pulse and measure time until it comes back (like a bat!)
- Problems?
 - Sound is very slow in air (343m/s at 20°C)
 - Low sampling rate
 - Speed temp sensitive (0.6(m/s)/°C)
 - Need to compensate
 - Reflections!!
 - Some materials do not reflect

Sonar ranging

- Typical frequency 40-180kHz
- Sound wave propagates in a cone like manner
- Typically 25-45 degrees opening angle

Example use Sonar

Parking assistance for cars

LIDAR

LIDAR = <u>Light detection and ranging</u>

2D version

- Rotating mirror (75Hz)
- Pulsed laser (higher power, less energy)
- Long range (typ 80m) (depends on reflectivity)
- Accuracy 1cm
- Samples with 1°
- Often used in interlaced mode
- (combine two scans shifted 0.5°)
- Safety classified
- Expensive: \$4k

Ex: Laser scanner data

Velodyne 3D laser

Standard autonomous (research) car sensor 16, 32 and 64 scanning beams Starts at \$8000

Example data from 3D laser

Point cloud

The data from a laser (2D or 3D) is often referred to as a point cloud

A modern LiDAR can produce massive amounts of points per second.

Radar

- Radar = <u>RA</u>dio <u>D</u>etection <u>A</u>nd <u>R</u>anging
- Transmit and receive radio signal
- Many materials do not absorb / reflect / scatter much of the signal → long range
- High conductivity → strong reflection
- Get range and direction to multiple targets

Applications of radar

- Used heavily in aircrafts and ships industry
- Increasingly in cars and trucks.
 - ACC or autonomous modes

The camera

- Vision is our (humans) main sensory modality
- Most flexible sensory modality
- Getting the information from the camera data can be very hard
 - Complex sensory processing
- Relatively inexpensive (driven by mass market, mobile phones)

Computer vision

- Making robots see
- A large research field in itself
- There are several courses on image processing and computer vision
 - DD2423, Image Analysis and Computer Vision, per2
 - DD2424, Deep Learning in Data Science, per 4
- Applied computer vision
 - DD2419, Project course in Robotics and Autonomous Systems, per 3-4

Camera calibration

- Need to calibrate your camera just like any other sensor
 - **Intrinsic** camera parameters
 - Describe the "geometry of the camera"
 - **Extrinsic** camera parameters
 - Where is the camera

Intrinsic camera parameters

- Principal point (center of the image) (u₀,v₀)
- Focal length (f) (sometimes f_x, f_y)
- Skew between x and y axes (γ)

A = camera matrix
$$A = \begin{bmatrix} f_x & \gamma & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$

Lens distortion (non-linear)

Compensate for distortion

http://www.dxo.com/us/photo/dxo_optics_pro/optics_geometry_corrections/distortion

Stereo vision

- Distance given by baseline, focal length and disparity (difference in image position)
- $Z = b * f / (x_1-x_2) = b * f / d$

Ex: ZED 2 from Stereolabs

RGB-D camera

- Combines images (RGB) with depth (D)
 - Camera and range sensor in one!!
- Two main techniques
 - Structured light
 - stereo with 1 projector + 1 camera
 - Time of flight (phase shift aka indirect ToF)

Intel RealSense D455

Intel RealSense L515

What does a RGB-D sensor enable?

- Can work directly with geometry
 - You get a point cloud
- Scale is given
 - Not the case for RGB images where scale is unobservable (unless you have something known, stereo baseline, motion between frames, etc)

3D models

Object recgnition, classificartion, etc

Long history, slow progress

A paradigm shift!

- For a long time, progress was made by coming up with increasingly more complex
 - features
 - classifiers
 - etc
- Then there was deep learning...

Object detection in Pascal VOC 2007 Challenge

Images Understanding

https://www.theverge.com/2016/11/30/13799582/amazon-rekognition-machine-learning-image-processing

Images Understanding

https://www.theverge.com/2016/11/30/13799582/amazon-rekognition-machine-learning-image-processing

Learn to infer depth

 Learn to "see" the depth from a single image (i.e. without stereo)

Ex: "AI mode" in ZED 2