KTH ROYAL INSTITUTE

OF TECHNOLOGY

Lecture 8:
Behavior Trees and Task Switching

by Petter Ogren

1]

T | v

Content

« When to use Behavior Trees (BTs)?
— When deciding “what to do next”
— Creating complex controllers/policies
« What are BTs?

— Hierarchically modular policies
— Optimally modular [1]

« How to create BTs?

— Improvise

— Use planning (backward chaining)
« The Big Picture

— Genetic Algorithms
— Control Theory (Performance Guarantees)
— Reinforcement Learning

% Behavior t - B3
E%EDKTH e av I o r re es Boston Dynamlcs “‘ # » Concepts » Autonomy » Mission Service

VETENSKAP %
39 OCH KONST 2%

28 |n use

PUIIIINNSN MISSION SERVICE

The Mission Service is a way for API clients to specify high level autonomous behaviors for Spot

© Concepts using behavior trees.

About Spot B h .

Ny ehavior trees

Base services Behavior trees allow clients to speci
» Behavior Tre

O Previous Next © /
!/

Behavior Trees

Behavior tree codelets are one of the primary mechanisms to control the flow of tasks in Isaac SDK.
They follow the same general behavior as classical behavior trees, with some useful additions for
robotics applications. This document gives an overview of the general concept, the available
behavior tree node types, and some examples of how to use them individually or in conjunction
with each other.

General Concept

D oo
) GitHub - jstyrud/WASP-CBSS-BT () Behavior Trees — ISAAC 2021.1 docu, [Black Women are Ranked the Most E. @ writin)
B # » Plugin Tutorials » Writi New Behavior Tree Plugi
» Plugin Tutorials » Writing a New Behavior Tree Plugin Behavmr Trees Tota] Cltat|ons C|ted by 293
in Robotics and Al
Writing a New Behavior Tree Plugin Rl U

e Overview
o Requirements
e Tutorial Steps

Overview 2017 2018 2019 2020 2021 2022

Nichele Coledanchise. Qo

latest Potter Ogren

This tutorial shows how to create you own behavior tree (BT) plugin. The BT plugi

by the BT Navigator for navigation logic.

What to do next?

(any autonomous systems needs to answer this question)

Grasp Recharge
Drop Lock
Walk Unlock
Open Pull
Close Push

Search Kick
Clean Speak

Listen |dle
Run Throw

2022-09-18

Recharge Lock

Grasp Speak Unlock

Pull

Open Walk Push

Kick

Drop Close Search Speak

Finite State Machine Clean Recard

Each action needs to know “What to do next”...

2022-09-18

b,
Fxr Can you spot the Bug?

% VETENSKAP SZ}

<8 OCH KONST 2%

IR

team has the puck

opponent has

patrol opponent has
puck is too the puck eXpanded
far away
away L
in from

position position

close to
opponent leader

/_—\>
defend [S——| stealPuck

too far from
opponent leader

puck has
no owner

puck has

no owner puck has

no owner

puck is
. opponent
has the

puck

pursuePuck

(parent)

(tick)

A

Success,
Failure,
or Running

Grasp

Behavior Tree

Each action needs to know
“Did | Succeed or Fail?”

Ancestors decide “What do to next?”

Grasp Recharge
Drop Lock
Walk Unlock
Open Pull
Close Push

Search Kick
Clean Speak
Speak Record

Run Throw

2022-09-18

Two Fundamental Compositions of Actions

» Fallback (?)(or) « Sequence (=2)(and)
IF Failure then Tick Next IF Success then Tick Next
else Return “same as child” else Return “same as child”
i)
4

4 +Tick (going down)
T -Success (up)
190) t‘ﬁ-Running (up)
Banana Banana *Failure (up)

Note how Ancestors decide “What do to next?”

2022-09-18 8

oy

Nk
ZKTHY

% VETENSKAP
<8 OCH KONST 2%

o

- |Move to Object

| -.. while satisfying (ACC):
-In Safe Area

Success
*Running
*Failure

Classical Control handles noise disturbances
Behavior Tree handles event disturbances

Success
*Running
*Failure

Move to Safe Area
... while satisfying (ACC):

2022-09-18 11

Properties of Behavior Trees :

Modularity
— Few dependencies between components (Important for large systems)
— Optimally modular [1]

Hierarchical structure

— Actions exist on many levels of detail (Get tea — opening door — grasp handle — move arm)
— Hierarchical modularity

Equally expressive as FSMs [2] (with internal variables)

— choice a matter of taste (as programming languages)

BTs generalize [3]

— Subsumption Architecture
— Teleo-Reactive Approach
— Decision Trees

12

Content

« When to use Behavior Trees (BTs)?
— When deciding “what to do next”
— Creating complex controllers/policies
« What are BTs?

— Hierarchically modular policies
— Optimally modular [1]

e How to create BTs?

— Improvise

— Use planning (backward chaining)
« The Big Picture

— Genetic Algorithms
— Control Theory (Performance Guarantees)
— Reinforcement Learning

If-then-else constructs

 How to do
If-then-else?

« If True... .

Design BT using Planning (Backward Chaining)

« Backward Chaining
— Solving an Al Planning Problem by working backwards from the goal

« Example:

— Goal: Leave the room

— To leave | need to pass through the door

— To pass the door | need to open the door

— To open the door | need to grasp the handle
— To grasp the handle | need to extend my arm

- Plan:
> Extend arm

Grasp handle BTs can do this reactively...
Open door

\"4

\"4

\"4

Pass through the door

A BT that achieves a single goal
(using feedback)

Post-condition of Actions

Door is open

Has " Brake door |
Crowbar

W These can be

Pre-conditions of Actions combined recursively...

Backward chaining:
starting with 2 goal conditions

Freezing

? ?
> K4 N >
Has Warm Has Has
Door Open
Jacket Apple Banana

Find BTs that achieve each

Replace Condition (with Sequence parent)

. >
with new subtree
Not Not
Freezing Hungry
? ?
> 2 >
Has Warm Door Open Has Has
Jacket Apple Banana

Iterate this...

Replace conditions...

Has Warm
. Jacket

ST]

And so on...

C ity S
Door mat
1s removed

Execution example

il

|
>

Has Warm
24¢

Door is open

Not Freezing

Banana

l

Person
Nearby

Door mat
1s removed

Execution example

il

|
>

Has Warm
24€

Door is open

Not Freezing

Banana

l

Person
Nearby

Door mat
1s removed

oy

Pay Agent to
Place Object

oM R, Ir;\?:;‘e O%?;I at At Charger
s . ?
In Safe .
Area . At -
e Charger
Free path to ove to .
Safe Ar i . =t to Move to
? Charger exists
e
Object at — -
Goal

Object in < 0.5m Place Object Agent Robot

What about Gripper to Goal# . . _ at Goal Nearby has $
this example? ' M \

Grasp
Object

Robot near
Object

ree path to
Goal exists

Move to
Goal

Free path to Move to
2022-09-18 Object exists Object

Do Task
and Earn $

/ A

/ N\
E))]
\ 7 /)

\ 74

oy

o R

411 The Backward Chained Behavior Tree

Mt

I e
S

At >
Charger

In Safe
Area

Move to Move to
Safe Area // — Charger
5| | Place Object 51 | Pay Agent to
—N] at Goal -

\Place Object
<0.5m Robot
\ to Goa has $

Grasp F{g%%:h Payed Task Do Task
Object : Available and Earn $
exists
Robot near — -
Object \ ‘
Free path to Move to

2022-09-18

bject exist Object

oy

L,
ZKTHY

% VETENSKAP %

<8 OCH KONST 2%

IR

2022-09-19

24

Conflict: Action brakes already satisfied
Objective

Solution: Avoid braking already achieved goals (if possible)

When does this fail? (#2)

« If Lamp 1 is broken, the policy will still try to move to Lamp 1...

« Solution:
— Swap order of Fallbacks (so Lamp 2 is first option after initial fail)
— Add precondition to deactivate first subtree ?
« When? T =
—- Count # fails Subtree 1 ? Lamp10Q Turnlé?\lmp1 ? Lamp 2 OK TurnldilmpZ
might work
- (Use Andor'tree) Robot near Move to Robot near Move to
Lamp 1 Lamp 1 Lamp 2 Lamp 2

d
-

18-

2022-09-19

Key idea:
Replace conditions with BT
that achieve them!

Freezing
? ?
> K4 N >
Has Warm Has Has

Door Open
Jacket : Apple Banana

Backward chained ;h"l
BT for Minecraft Al

Loading world

Building tertain

18/09/2022

Sometimes we can simplify Backward Chaining
(Implicit Sequences)

* Only 2 levels

« Works if

 Action satisfies
Condition to Left

» Loose some
structure...

Can Behavior

be divided into
Cases? (and
sub-cases)

Think “Decision
Tree”

Use If-then-
else...

Sequences - Improve Safety

« BTs enable Safety-
Guarantees using
the following
construction...

* [f-not-then-else...

« Special case of
Backward Chaining

Content

« When to use Behavior Trees (BTs)?
— When deciding “what to do next”
— Creating complex controllers/policies
« What are BTs?

— Hierarchically modular policies
— Optimally modular [1]

« How to create BTs?

— Improvise

— Use planning (backward chaining)
 The Big Picture

— Genetic Algorithms
— Control Theory (Performance Guarantees)
— Reinforcement Learning

(-

The Big Picture

s
Planning

5

Learning

5

Control D Behavior
Theory Trees

>

5 5

(-
TS [R5 S

Genetic
Algorithms

(-

Genetic Algorithms

A

Mutation
(small random changes)

Applies to ¢
- Viruses Y [

— Humans 4

v

— Any Optimization problem

— Behavior Trees ¢
lterate...

: Pick a (random)
fitness : :
A starting generation A

v

Crossover
(breed new)

Select the best o

Genetic Algorithms O

L:\) Behavior O
Trees

/ \
oJo)n
Mutation —— > —> Genetic
@ @ Algorithms
d 2

5

v

« BT trivially maps to Genes
« Mutation/Crossover easy

Genetic Algorithm for
Mario Al BT

7

N

5

Behavior
Trees

)

O

Genetic
Algorithms

—> —> Move right
Enemy in oot - o Receptive field
Cell 14 | P ol nf2]3
N\
oy7 |8
11112113} 14
Obstacle Obstacle R
in Cell 8 in Cell 12 20(2112212324

Not Ob-
stacle in
Cell 16

Not Ob-
stacle in
Cell 17

5

The Big Picture

D Behavior
Trees

Let actions have indexes i &S

Let ; be states where i executes

Let B; be domain of attraction

Then we see that many states end up in
Ge and G-

Robot near object

Object in hand

=% Example: Avoiding Empty

FKTHS

% VETENSKAP %

@4 Batteries

100

|
90 T
ol |
Guarantee 70} T
I
Power Supply T
° Do Other 60+
' Task) T
w 90r
<
\ w0 |
Battery Level 30} T
>20 % Recharge T
and Not Battery NV | — — e e e e e e A
Recharging 1ol T
|<—-—<——'<——'<——<——'<——'—<———-_<—_—_'_§—__—'__-<—-—

Battery Distance from charger
level

LA)
¥ KTH %
% VETENSKAP ?2}’

<8 OCH KONST 2%

IR

Avoiding Empty Batteries

X, [%]

>
Guarantee
Power Supply
Do Other
Task
Battery Level \
>20 % Recharge
and Not Battery
Recharging
100 ! ‘
90 ?
ol |
70 ?
60 f
2 ol |
) 40 ?
30 T
20 ?
ol |
R IS

X,]

0F —= —— — o~ o~ . - - - A
80f — — — — - .- - —
0F — — — - - .- = -—
60Ff —= — — - o~ . . e -
50 —= —= — -~ - = - 1
40F — — — — - R -
1
30 —= — — -~ Lo - - -
1
20 — — — ~- ~ 1 - - = -—
1
10F —= —— — — o~ \ . - = - 1
1
of —= — — — < ! . - -
60 80 100
[ml
100 - - — -
90 - - — -
80 \ - - — -
1
70 - - = -
1
60 S -
1
50 Lo _
40 A —
'),
30 S - = -—
20 -— e = - =) - < - - A
10 - = = = - - - - -
0 - = = = - - - - -
60 80 100

oy

L,
ZKTHY

% VETENSKAP g\}
28 OCH KONST %%
0 o

TR

The Big Picture

« Can we give
Performance
Guarantees?

« Stability/Convergence?

Behavior
Trees

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

6073

Convergence Analysis of Hybrid Control Systems in
the Form of Backward Chained Behavior Trees

Petter Ogren

Abstract—A robot control system is often composed of a set of
low level continuous controllers and a switching policy that decides
which of those continuous controllers to apply at each time instant.
The switching policy can be either a Finite State Machine (FSM), a
Behavior Tree (BT) or some other structure. In previous work we
have shown how to create BTs using a backward chained approach
that results in a reactive goal directed policy. This policy can be
thought of as providing disturbance rejection at the task level in the
sense that if a disturbance changes the state in such a way that the
currently running continuous controller cannot handleit, the policy
will switch to the appropriate continuous controller. In this letter
we show how to provide convergence guarantees for such policies.

Index Te Behavior-based
archi es and progr i

, robot safety, control

1. INTRODUCTION

EHAVIOR Trees (BTs) were created by computer game

programmers as a way to improve modularity and reactiv-
ity in the control policies of so-called Non-Player Characters
(NPCs) in games [1]. Since then, BTs have been receiving
an increasing amount of attention in Robotics [2]-[9]. The
reason is that robotics share many high level planning and
control problems with game Al, while at the same time, the low

Object at
Goal

Place Object
at Goal

Move to Goal

Robot near

Free path
exists
Object
ject

Fig.1. ABTincluding the four actions Move to Object, Grasp Object, Move to
Goal, Place Object at Goal, designed in a way to provide disturbance rejection
at the task level. An extended version, including additional objectives and

altarnativa wave ta achiava enhanale ran ha fannd in Fia &

The Big Picture S5 | O

Q Behaviorﬂ LearningiO
Trees

* Some tasks are “easy”
other “hard”

 Use Reinforcement
learning to do hard task

Move to Safe
Area

» Getrewards from BT
structure

Pay Agent to
Place Object

Place Object
at Goal

» Reach post condition

« Avoid “wrong” switching

Do Task and
Earn $

Free path to
Robot near

Payed Task
Goal exists sl e o Available
Object
Free path to Move to Ob-
Object exists ject

* (research in progress...)

Content

« When to use Behavior Trees (BTs)?
— When deciding “what to do next”
— Creating complex controllers/policies
* What are BTs?

— Hierarchically modular policies
— Optimally modular [1]

« How to create BTs?

— Improvise

— Use planning (backward chaining)
« The Big Picture

— Genetic Algorithms
— Control Theory (Performance Guarantees)
— Reinforcement Learning

References

« [1] Biggar, Oliver, Mohammad Zamani, and Iman Shames. "On modularity in
reactive control architectures, with an application to formal verification." ACM
Transactions on Cyber-Physical Systems (TCPS) 6.2 (2022).

 [2] Biggar, Oliver, Mohammad Zamani, and Iman Shames. "An expressiveness
hierarchy of Behavior Trees and related architectures." IEEE Robotics and
Automation Letters 6.3 (2021): 5397-5404.

« [3] Colledanchise, Michele, and Petter Ogren. "How behavior trees modularize
hybrid control systems and generalize sequential behavior compositions, the
subsumption architecture, and decision trees." IEEE Transactions on
robotics 33.2 (2016): 372-389.

56

Questions?

2022-09-18

57

