KTH ROYAL INSTITUTE
OF TECHNOLOGY

Lecture 7: Planning

Petter Ogren

— |
= | T -

oy

Qég - S%",@ u
1931 Reminder!
Monsatt
% Edit

Reminder: KATTIS HelloWorld Sep 12 at 2:42pm
Parag Khanna

All Sections

Dear DD2410 students. TOday,

This is to remind you that the deadline for 'Hello World' KATTIS assignment is on Wednesday Sep 14 at 17:00.
It is mandatory for all students to complete this and it is necessary for you to test your Kattis registration before the deadline! Submitting (or

registering) after the deadline will not count.

In further assignments in KATTIS, when you upload the submission file(s), please select 'Python with numpy' in language before you submit. Please do
this even if you are not using numpy in your submission.

or autho Unread @&] |

When does a Robot need to do Planning?

« TogofromAtoB

To grasp object O %
o))

To assemble an object '

0% 9O
* Note: Planning horizon €< Predictability o) o 3
(0] oo
* In this lecture we assume the world is static 0% ©

2022-09-14

In general: Path planning is hard

« A complete algorithm finds a path if one exists and reports no path
exists otherwise.

« Several variants of the path planning problem have been proven to be
NP-hard.

« A complete algorithm may take exponential time.

« > We usually have to settle for “Good Enough” algorithms

Planning for Autonomous Driving

2

SO

00.00 m/h

How is this done?

Planning for Autonomous Driving

How is this done?

The foundation for many planning algorithms

» Shortest Path in a Graph
A Graph G=(V,E)

— Vertices (vi)
- EdgeS eij=(Vi, Vj)

start

— Costs ¢ goal

» Solved by

— Dijkstas algorithm
- A*

Dijkstras Algorithm (dynamic programming)

dist[s] < O (distance to source vertex is zero)
for all v e V-{s}
do dist[v] <00 (set all other distances to infinity)

C—0 (C, the set of closed vertices is initially empty)
Q«—V (Q, the queue initially contains all vertices)
while Q =0 (while the queue is not empty)
do u « argmin(Q,dist) (select the element of Q with the min. distance)

C+—Cu{u} (add u to list of closed vertices)

for all v € neighbors[u]

do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
then d[v] «d[u] + w(u, v) (set new value of shortest path)

(if desired, add traceback code)

return dist

a1 &

dist[s] <o

Dijkstras vs A* for all v € V-]
do dist[v] «—o0

C—0

Q—V

while Q =@
The Close.d Set. grOYVS do u <« argmin(Q,dist + heur(u, goal))
« As a Circle in Dijkstra (é‘—Cﬁ’{U} bborslu]

. .« g o or all v € neighbors|u
* As an ellipsoid in A* do if dist[v >dlst +w(u v)
then d[v] u] +w(u, v

-

'l'_|"'I
1 A 8

h B
g

Dijkstras vs A*

The closed set grows

As a Circle in Dijkstra
As an ellipsoid in A*

dist[s] «—o
for all v e V-{s}
do dist[v] «—o0
C—0
QV
while Q #0

do u « argmin(Q,dist + heur(u, goal))

C—Cu{u}

for all v € neighbors[u]
do if dist[v] > dist[u] + w(u, v)

then

d[v] «d[u] + w(u, v)

(distance

(set all ot
(S, the se
(Q theq
(while th
(select th
(add u to

(if new sl
(set new

(if desire

How do we use A*? =~

* Graph? . . l

« Costs?l
« What chess piece . . .
has the graph on]
the right? BB B
= H

H HE BN

e R

TR VR TR R

How do we use A*?

« Graph?
 Costs?

* Fora

Robot...

TR VR Y YR

How do we use A*?

Graph® :....-..
. Costs? 'ﬁ;
B
 Problems

— Robot is not a point (size)
— Robot does not live on R2 (manipulator, drone)

— Motion is restricted (car) f\c g\t\g\

Common Path Planning Approach

Continuous Problem

v

Configuration/State
Space Problem

Discretized Problem

* Sample & Search

Graph search

Configuration and State Spaces

Configuration: A complete specification of every position of
the system

— Ex: (X, Yy, theta) of a car

— Configuration space (C-space)
> space where conf. lives

— Ex: R3o0or R2

State: A complete specification of the system : g\cgc
- Ex: (xy, theta, velocity) of a car fa\‘“ |

— Configuration space is subset of State space

oy

o R

231 2 link manipulator

28 OCH KONST %%
0 o

a %X%b

» Workspace: 3D space around robot » Configuration space: A complete
specification of every position of the
system

(workspace)
robot

____________ Configuration
space robot
(single point)

(workspace)
obstacle

Configuration
space obstacle

Configuration Space Obstacles (CSO)

« Whatis a CS0O?

« Part of C-space that induces a collision somewhere

workspace

C-space

Configuration Space Obstacles (CSO)

« Whata CSO?

» Part of C-space that induces a collision somewhere

Work space Configuration space

ARAWA
N
4

Reference point

y
>

—

Configuration Space Obstacles

« What is that?

» Part of C-space that induces a collision
somewhere

Common Path Planning Approach

Continuous Problem

How do we *

get the Configuration Space
Graph? Problem

Discretized Problem

* Sample & Search

Graph search

How to make a Graph from C-space?

R
i
ks
e
e

R
i
*
e
e

A
ks
ks
e
ke

TR VR S YR

oy

o R

28 OCH KONST 2%

IR

31 Solving A* on the Grid Graph

DUl [WIN|W|s|UO|[D |
Nl |WIN|IRFIN|W[lUO D

robot phase space, path length = 1.11 rads

How small should we make the grids?

* Tradeoff

— Reduce Computation (use large grids)

DU [WIN|W|s|U|D |
Nl |WIN|IRIN WU D

— Improve Accuracy (use small grids)
> Fake paths appear

> Real paths disappear

— Note:

> Smaller grids do not give near-
optimal paths

How to make a Graph from C-space?

A
Visibility

Graph

! Qinis

goal

How to make a Graph from C-space?

e Observation:

— Shortening any path gives
a visibility graph path

— Advantages?
— Drawbacks?

How to make a Graph from C-space?

A Voronoi

Graph

» Points that have equal distance to the two closest obstacles
« Advantages?
* Drawbacks?

High resolution in narrow areas
Low resolution in open areas...

Quadtree Um0

Decomposition
D empty D mixed . full

High resolution in narrow areas
Low resolution in open areas...

Octree
Decomposition

B 7

l:l EMPTY cell L MIXED cell . FULL cell

What about undrivable trajectories?

« Can a car drive any path?

14/09/2022

33

Dubins car

« The optimal path for a car (with no obstacles) can be created
using at most 3 circles and 1 straight line

24.78 path length, 13.17 distance

- 19.08 path length, 11.34 distanc

34

Can we fix an undrivable path?
Plan and Transform

Algorithm
1. Plan a short non-traversable
path
2. Pick two points on path J

3. Connect with traversable sub-
path

4. lterate from 2, until whole path
Is traversable

* Not always possible

» Hard to know when to stop

« Can yield very good solutions for visibility graph

Two Problems:

« How small to
make the grids?

* Is the graph
drivable?

Continuous Problem

v

Configuration Space
Problem

Discretized Problem

Common Path Planning Approach

Can we create

the graph and
search at the
same time?

v

Graph search

Sample & Search

Make the

graph
traversable!

Sample & Search: RRT

RRT: Rapidly Exploring Random Trees

Goal

le RRT Planner

imp

S

Example

g
v

L

o
2h
Sz
wo
zxv
&

I
5O
50
o

s
¥

0 o
et

g

Building an RRT

 To extend an RRT:

— Pick a random point a in X

— Find b, the node of the tree
closest to a

— Find control inputs u to steer
the robot from b to a

Building an RRT

 To extend an RRT
(cont.)

— Apply control inputs u for
time 6, so robot reaches ¢

— If no collisions occur in
getting from a to ¢, add c to
RRT and record u with new
edge

RRT Algorithm

 To extend an RRT

Pick a random point a in X

Find b, the node of the tree
closest to a

Find control inputs u to
steer the robot from b
to a

Apply control inputs u for
time o6, so robot reaches ¢

If no collisions occur in
getting from a to ¢, add c to
RRT and record u with new
edge

RRT

Resolution
improves over time
Drivable by design

Executing the Path

Once the RRT reaches s

— Backtrack along tree to identify edges that lead
from Sggar tO Syoa

— Drive robot using control inputs stored along
edges in the tree

* Problem: ordinary RRT explores X uniformly
— slow convergence

 Solution: bias distribution towards the goal
— Pick the goal point with X% probability

Building an RRT

Bias random points towards goal!
|.e. pick the goal every 10t time...

 To extend an RRT:

— Pick a random point a in X

— Find b, the node of the tree
closest to a

— Find control inputs u to steer
the robot from b to a

 To extend an RRT

Pick a random point a in X

Find b, the node of the tree
closest to a

Find control inputs u to
steer the robot from b
to a

Apply control inputs u for
time o6, so robot reaches ¢

If no collisions occur in
getting from a to ¢, add c to
RRT and record u with new
edge

To extend an RRT

Things to think
about...

Pick a random point a in X

Find b, the node of the tree
closest to a

Find control inputs u to
steer the robot from b to . (Xy)?

a

e (x,y,theta)?
Apply control inputs u for . ()((ytheta \)/),?
time o6, so robot reaches ¢ Y5 V) !

If no collisions occur in
getting from a to ¢, add c to
RRT and record u with new
edge

Closest in
what sense?

To extend an RRT

about...

Pick a random point a in X

Find b, the node of the tree
closest to a

Find control inputs u to
steer the robot from b to
a

Apply control inputs u for
time 6, so robot reaches ¢

If no collisions occur in
getting from a to ¢, add c to
RRT and record u with new
edge

Things to think

y

Why are there
no Nodes here

Consider sampling bias

In narrow gaps
Along optimal grid path

Things to think
about...

What happens
here?

 To extend an RRT

— Pick a random point a in X

— Find b, the node of the tree
closest to a

— Find control inputs u to
steer the robot from b to
a

— Apply control inputs u for
time 6, so robot reaches ¢

— |f no collisions occur in

getting from a to ¢, add c to « Check if c can be connected to goal
RRT and record u with new using Dubins Trajectory (purple)
edge - If so done!

« Or post process to get smooth blue

Additional improvement:
Bidirectional Planners

 Build two RRTs, from start and goal state

I‘I/')L N
) 2

4/

- . ///
/AN

« Complication: need to connect two RRTs
— bias the distribution, so that the trees meet

Some notes on RRT

* RRT finds one solution with probability -1
* Quality is not perfect...

» Brake through in 2011 (Karaman and Frazzoli)
« RRT*

 RRT* finds optimal solution with probability - 1

fxray RRT vs RRT* (Karaman and Frazzoli)

39 OCH KONST 2%

a p
s

i TR t’/ 7 R

3 (4
1) &
[— Q:-:-“
R L

o

Y
§ -
=
7
y
.

How does the RRT* work?

Same start as RRT...
— Pick a random point a in X

— Find b, the node of the tree
closest to a

— Find control inputs u to
steer the robot from b to a

— Apply control inputs u for
time 6, so robot reaches ¢

— |If no collisions occur in
getting from a to c, add-ete
RRT and record uwith-new

edge

How does the RRT* work?

Same start as RRT...

Pick a random point a in X

Find b, the node of the tree
closest to a

Find control inputs u to steer
the robot from b to a

Apply control inputs u for time o,
so robot reaches ¢

_

If no collisions occur in getting
fromatoc

> Find set of Neighbors N of ¢
> Choose Best parent!

> Try to adopt Neighbors (if
good)

°©
VETENSKAP %
OCH KONST 2%

a p
s

RRT* (2011, original)

Algorithm 6: RRT*

\ 1V {zim}; F < O
2 fori=1,...,ndo
K 3 Trand ¢ SampleFree;;
|, .
5
6

Tnearest € NeareSt(G = (‘/: E): xrand)§
Tnew ¢ Steer(mncarest:xrand) 3
if ObtacleFree(Zpearests Tnew) then

8

9
10
12
13
14

L

15
16
17

char A Near(G = (‘/’ E)’ Tnews min{'YRRT‘ (IOg(card (V))/ card (V))l/da 7’}) 3

VeV U{Znew}

Tmin € Tnearest’ Cmin € COSt(xncarcst) + C(Line(mnem‘ests mncw))§

foreach Znear € Xnear do // Connect along a minimum-cost path

if CollisionFree(Zpear, Znew) A COSt(Znear) + ¢(Line(Zyear; Znew)) < Cmin then
| Zmin ¢ Znear; Cmin + CoSt(Znear) + ¢(Line(Encars Tnew))

E«+ EU {(xminsxncw)};

foreach z,ur € Xpear do // Rewire the tree
if CollisionFree(Znew, Tnear) A Cost(Znew) + c(Line(Znew, Tnear)) < Cost(Znear)
then z,,en ¢ Parent(Zpcar);

| E — (E \ {($parcnt:wnca.r)}) U {(xncw,xncm‘)}

‘r" G = (v, B);

Pt

If we just build a search
tree we get copies of
same state

Bes

N\

JER

—1

A

L -

RO T

[
i
\ [
t'/\ .

Allowing just one state
in each grid

AT

N

—1 :

| T T T .71

[T I

[TR T T T .71

\

Allowing 4 states in each
grid: theta=(0,pi/2,pi,3pi/2)

(X,y) (x,y, theta) (x,y, theta, x_real, y_real)

| | |
| | |

/

— I}
L]]
/

« How to make sure transitions are
feasible?

» Allow positions that are not in center of grid -> Hybrid A*

% VETENSKAP SZ}

<8 OCH KONST 2%

e (grid_no (x,theta), actual_pos, cost, tot_cost_estimate, parent_node)

Algorithm 1 Standard version of Hybrid A*

procedure PLANPATH(m, p, x5, 05, G)
ns — (5757 087 xs; 07 h($57 G)? _)

I:
2
3: O« {ns}
4: C«+10
5. while O # () do
6 n < node with minimum f value in O
N 7 O+ O\ {n}
[Standard A* 8 O« CU{n}
J 9: if n, € G then
10: return reconstructed path starting at n
11: else
12: UPDATENEIGHBORS(m, t, O, C\,n)
13: end if

14: end while
15: return no path found
16: end procedure Key step

oy

fere Hybrid A*

IR

for all desired
heading changes 17: procedure UPDATENEIGHBORS(m, , O,C, n) .
18:for all) do f

Add to closed if
obstacle

(if m,(n’) = obstacle then
If grid is non-empty & C+Ccu{n'}
> ; else if In € O : nz; = n/; then

R\

Replace node in open
if cost improvement

(grid_no, actual_pos, cost, tot_cost_estimate, parent_node) }

T |

19: n' < succeeding state of n using p(ng, d)

20: if n’ ¢ C then \

Add to Open

24: compute new costs g’
25 if ¢’ < g value of existing node in O then
26: replace existing node in O with n/ Key Difference

end if
else
29: O+ O0ou{n'}
30: end if
31: end if

32: end for
33: end procedure

Need way to move

between given
Note: Heading is discretized, only position is allowed to be “free” in cell headings

Planning for Autonomous Driving

« Orange: Hybrid A*

« Purple: Obstacle free solution
(Dubins Car) from orange to goal

« Blue: Smooothed final trajectory

Common Path Planning Approach

Continuous Problem

v

Configuration/State
Space Problem

Discretized Problem

* Sample & Search

Graph search

Want to know more about planning?

« DD2415 Safe Robot Planning and Control 6.0 credits

— Teacher: Jana Tumova
— When: P2

14/09/2022

68

The End

