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Remark:
I will introduce concepts and give examples, but not details. 
I link to material in Canvas for some more details.
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Global Navigation Satellite System
(GNSS)
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Global Navigation Satellite System (GNSS)

• GPS the most well-known implementation

• Accuracy around 2-4m

• RTK GPS can improve accuracy down to cm
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So why do we need anything else???

• At least 4 satellites need to be in line of sight.
à Indoor,tunnels, etc GPS-denied
• Limited accuracy or more expensive with RTK
• The update rate is relatively limited (a few Hz).
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Stockholm International Fairs

• Had about 56000m² of exhibition space
• How to automate the process of marking 

stands on the floor?
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Example fair layout

• Thousands of points to mark
• Very tedious job
• Time is money → want short time 

between fairs
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The Vision
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Meet Harry Plotter!

P. Jensfelt, E. Förell and P. Ljunggren, 
“Automating the Marking Process for Exhibitions and Fairs”, 
Robotics and Autonomous Magazine, 14:3, 2007
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Example marks

• Harry got a sister, Hermione
• System in operation since 2003
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Current version of the hardware
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Example marks Localization at work
IJCAI ECAI 2018
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Two steps in localization

• Dead reckoning – prediction step
• Map based update step
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Dead reckoning

• Use relative measurements to estimate how 
the robot is moving
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Dead reckoning

• Use relative measurements to estimate how 
the robot is moving

• Examples
• Odometry using wheel encoders
• Motor commands
• Visual odometry
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Dead reckoning

• Use relative measurements to estimate how 
the robot is moving

• Pros?

• Cons?
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Dead reckoning

• Use relative measurements to estimate how 
the robot is moving

• Pros
• High frequency and low cost

• Cons
• Error unbounded and only relative position
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Odometry dead-reckoning differential drive

• Odometry
- x(k+1) = x(k) + v*dt*cos(θ) = x(k) + D*cos(θ)
- y(k+1) = y(k) + v*dt*sin(θ) = y(k) + D*sin(θ)
- θ(k+1) = θ(k) + ω*dt = θ(k) + Δθ

pose(k+1) = f1(pose(k),v,ω,dt) = f2(pose(k),D,Δθ)
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• Odometry with noise (one possible model)
- x(k+1) = x(k) + (v*dt + ϑD)*cos(θ)
- y(k+1) = y(k) + (v*dt + ϑD) *sin(θ)
- θ(k+1) = θ(k) + (ω*dt + ϑθ,ω) + ϑθ,v

- Where ϑD, ϑθ,v and ϑθ,ω are typically assumed to be zero-mean 
Gaussian i.e. N(0,σ2)

- Integrating the noise leads to drift!

Odometry dead-reckoning differential drive
with noise
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Visualization of drift in odometry
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Map based update

• Measure distance, bearing, etc to “objects” 
with known locations
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Map based update

• Measure distance, bearing, etc to “objects” 
with known locations

• Examples:
• Triangulation at sea

https://www.paddlinglight.com/articles/navigation-fixes-and-
triangulation/
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Map based update

• Measure distance, bearing, etc to “objects” 
with known locations

• Examples:
• Triangulation at sea
• Trilateration in GPS system

https://gisgeography.com/trilateration-triangulation-gps/
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Map based update

• Measure distance, bearing, etc to “objects” 
with known locations

• Pros?

• Cons?
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Map based update

• Measure distance, bearing, etc to “objects” 
with known locations

• Pros
• No drift, position in world frame

• Cons
• Need to correctly associate measurement 

with part of map, (typically) lower frequency
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Localization

• Two step process
• Prediction step

• Dead reckoning estimation
• Motion model: xk+1 = f(xk|uk+1)

à p(xk+1 | xk , uk+1)
• Increases uncertainty
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Localization

• Two step process
• Prediction step

• Dead reckoning estimation
• Motion model: xk+1 = f(xk|uk+1)

à p(xk+1 | xk , uk+1)
• Increases uncertainty

• Update step
• Correct estimate with map based position
• Measurement model: zk+1 = h(xk+1)

à p(zk+1 | xk+1)
• Decrease uncertainty
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Bayesian filter formulation

Prediction based on control input uk:

p(xk+1|Zk,Uk+1) = ∫p(xk+1|uk+1,xk) p(xk|Zk,Uk) dxk
à distribution smeared out (uncertainty increases)

Update with new measurement zk+1:
p(xk+1|Zk+1,Uk+1) = η p(zk+1|xk+1)p(xk+1|Zk,Uk+1)
àdistribution more peaked (uncertainty decreases) 
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Bayesian filter formulation

Prediction based on control input uk:

p(xk+1|Zk,Uk+1) = ∫p(xk+1|uk+1,xk) p(xk|Zk,Uk) dxk

Update with new measurement zk+1:
p(xk+1|Zk+1,Uk+1) = η p(zk+1|xk+1)p(xk+1|Zk,Uk+1)

motion model often given by odometry
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Bayesian filter formulation

Prediction based on control input uk:

p(xk+1|Zk,Uk+1) = ∫p(xk+1|uk+1,xk) p(xk|Zk,Uk) dxk

Update with new measurement zk+1:
p(xk+1|Zk+1,Uk+1) = η p(zk+1|xk+1)p(xk+1|Zk,Uk+1)

motion model often given by odometry

measurement model relating the state x to what you measure z
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Representing probabilistic information

• What we described so far is general. 
• To implement this we need to determine how to represent 
the distributions, such as p(xk|Zk,Uk)

• Two most common choices
- Gaussian distribution
- Set of particles (sampled based representation)



Localization Lecture

Patric Jensfelt DD2410

Gauss vs particle set for 2D example

• Green ellipse: Gaussian
• Black dots: Samples of the same distribution

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Algorithms for localization

• The two most frequently used algorithms
- Particle filter ßà Sample based representation
- Kalman filter ßà Gaussian
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Particle filter

The particle filter represents probability distributions using a 
set of particles, pk, sampled from the distribution.

Each particle represents one “hypothesis” about the state.

Each particle also has a weight, initialized as π=1/N.

pk={xk, πk}

state weightparticle
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Particle filter
pk={xk, πk}

The weight allows us to use fewer particles.
For example, can replace 5 particles by one with 5 times the 
weight

state weightparticle
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The particle filter

Prediction step

drift = noise free 
odometry prediction
diffuse = add noise
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Particle filter algorithm

• 0. Initialize the particles given what you know to start with 
and with weight 1/N.
- If you know nothing à start with uniform distribution
- Know a lot à start with very peaked distribution

• 1. Use odometry to update all poses of particles and 
perturb each particle according to odomety noise
- each particle will experience different noise (independent)

• 2. Use measurements and multiply the weight of each 
particle, i, with p(zk|xik), ie the likelihood
- This is the measurement model

• 3. Re-sample “if needed” and then return to 1.
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π1 π2

π3

πΝ
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Play with particle filter

• Prediction (what dictates the spread of particles?)
• Tracking
• Global localization

• Non-Gaussian distributions

• Start from uniform distribution and measure range to point 
landmark. What does the position distribution look like?
• What if you have two points?
• What if you measure bearing to a point?
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Update with range to singe landmark

• Clearly not
Gaussian!
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Update with range to two landmarks

• Smaller
uncertainty
• Now closer to
Gaussian
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Update with angle to single landmark

• Why do we not see a clear peak?
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High level summary: particle filter

• Very powerful framework
- Can be used for much more than localization

• Can represent any distribution (given enough particles)
- Multi-modal no problem!
- Can solve global localization, i.e. starting from uniform distribution

• Can handle non-linearities
• High dimensionality in the state a challenge

- To sample the state space, the number of particles required grows 
exponentially with the number of dimensions.
“the curse of dimensionality”
• Too computationally expensive for some applications

• Accuracy depending on number of particles
• Requires some processing to get the “answer”, i.e. what is the state? 

(often fits a Gaussian to distribution)



Localization Lecture

Patric Jensfelt DD2410

Gaussian approximation

• The Gaussian approximation to the probability distribution 
is quite good when the uncertainty is kept low
• Much more efficient representation than particle set

- N(x,P) where x is the state estimate (the pose) and P is the 
estimate error covariance of that estimate.
• 9 parameters for 3D statespace (x:3 + P:6) compared to 3N, 

where N>>1 for particle filter
- BUT limited to uni-modal distributions

• Updated by the Kalman Filter
- When there are non-linearities use
• Extended Kalman Filter (EKF) or
• Unscented Kalman Filter (UKF)
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Gaussian approximation
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Extended Kalman Filter
EKF Localization
• System dynamics (“motion model”)

• Measurement model

• Assumption on process and measurement noise
(zero-mean and Gaussian)

Make noise explicit
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Extended Kalman Filter (EKF)

• A prediction step and an update step like for the particle 
filter
• K is the Kalman gain, weights process vs measurement 
noise



Localization Lecture

Patric Jensfelt DD2410

EKF Localization

• Motion model is the same as for particle filter
• Measurement model the same
• Need to calculate Jacobians
• Need to set noise covariance matrices Q and R

- You can think of these as tuning values (just like in the case 
for the particle filter)

- Start at values derived from “reasoning” about errors and then 
adjust for good performance.
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Play with EKF

• Pure prediction (effect of noise?)
• Incorporate measurements (effect of noise?)
• Disturbances (“kidnapped robot”)
• Global localization

• What about large uncertainty and non-
linearities
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High level summary: EKF Localization 
• Computationally very efficient
• Has been used extensively “everywhere” for a long time

- The workhorse in target tracking for example
• Scales well to high dimensions
• Cannot handle multi-modal distributions
• Linearization problematic in cases of large uncertainty w.r.t
to the non-linearities. 
- Dynamics very different between estimated (around which we 

linearize) and true state (where the system actually is) à bad 
estimates

• Need “good enough” initial guess to converge which 
depends on the type of use case.
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Limitations of a Gaussian

• A Gaussian cannot represent multi modal distributions!

• “Active global localization for a mobile robot using multiple 
hypothesis tracking”, P. Jensfelt and S. Kristensen, IEEE 
Transactions on Robotics and Automation, 2001.
- Shows that you can handle multimodal distributions using a 

mixture of Gaussians
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What about those measurements?

• What can we measure in practice
- Range and bearing to a landmark (e.g. a corner)
- Lines/planes à distances and angles
- Transformation between images/laser scans
- Ray trace in a map to get likelihood of measurement
- …

• What we need: 
- Provide likelihood of the measurement given state p(z|x)
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Additional real-world challenges

• Data association is super hard!
- Need to associate a measurement with a landmark / part of a 

map
- Ex: What parts of the environment did the M measurements 

from the laser come from??
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Topological localization

• Discrete positions (“places”).
- Ex: A room, a subway station, near landmark X

• Pure topological localization depends on place recognition
- Need to recognize the place and at least be able to tell all 

places connected to current place apart so that we know how 
we move

• Often combined with coarse metric information
• Ex: Discretize corridor into segments
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So much more to say

• Localisation is an extremely heavily researched area
• Needed by all (more or less) systems that move
• Localiztion using

- Signal strength of WiFi signals
- BLE
- UWB
- …
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If there is time

• Menti
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