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Localization Lecture

Remark:
I will introduce concepts and give examples, but not details.
I link to material in Canvas for some more details.
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Global Navigation Satellite System
(GNSS)

Patric Jensfelt DD2410



Global Navigation Satellite System (GNSS)

e GPS the most well-known implementation
e Accuracy around 2-4m

e RTK GPS can improve accuracy down to cm
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So why do we need anything else???
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Localization Lecture

So why do we need anything else???

- At least 4 satellites need to be in line of sight.
- Indoor,tunnels, etc GPS-denied

- Limited accuracy or more expensive with RTK
- The update rate is relatively limited (a few Hz).
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Stockholm International Fairs

Resztaurants Inward Goods Dpt.

Deli Shop, Café Gal

X,

e Had about 56000m?2 of exhibition space

e How to automate the process of marking
stands on the floor?
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Example fair layout
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e Thousands of points to mark

e Very tedious job

e Time is money — want short time
between fairs
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Meet Harry Plotter!

A

\ Ink bottle
Printer controller

SICK LMS 291

Printerhead

Bumper

P. Jensfelt, E. Forell and P. Ljunggren,
“Automating the Marking Process for Exhibitions and Fairs”,
Robotics and Autonomous Magazine, 14:3, 2007
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Example marks

e Harry got a sister, Hermione
e System in operation since 2003
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Current version of the hardware

{ | AR @ FEan
|
& .
ol A~
T
J";,/

Patric Jensfelt DD2410




Localization Lecture

Localization at work
IJCAI ECAI 2018
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Two steps in localization

e Dead reckoning - prediction step
e Map based update step
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Localization Lecture

Dead reckoning

e Use relative measurements to estimate how
the robot is moving
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Localization Lecture

Dead reckoning

e Use relative measurements to estimate how
the robot is moving

o Examples
e Odometry using wheel encoders
e Motor commands
e Visual odometry
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Localization Lecture

Dead reckoning

e Use relative measurements to estimate how
the robot is moving

e Pros?

e Cons?
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Localization Lecture

Dead reckoning

e Use relative measurements to estimate how
the robot is moving

e Pros
e High frequency and low cost
e Cons
e Error unbounded and only relative position
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Odometry dead-reckoning differential drive

- Odometry
- X(k+1) = x(k) + v*dt*cos(0) = X(k) + D*cos(6)
- y(k+1) = y(k) + v*dt*sin(0) = y(k) + D*sin(8)
- B(k+1) = 8(k) + w*dt = B8(k) + A8

pose(k+1) = f;(pose(k),v,w,dt) = f,(pose(k),D,AB)
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Odometry dead-reckoning differential drive
with noise

- Odometry with noise (one possible model)
- x(k+1) = x(k) + (v*dt + 95)*cos(8)
-y(k+1) = y(k) + (v*dt + 9p) *sin(06)

- O(k+1) = 8(k) + (w*dt + 9g ) + T¢,

- Where 8p, 99, and 9, are typically assumed to be zero-mean
Gaussian i.e. N(0,02)

- Integrating the noise leads to drift!
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Visualization of drift in odometry

O Figure 1
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Map based update

e Measure distance, bearing, etc to “objects”
with known locations
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Localization Lecture

Map based update

e Measure distance, bearing, etc to “objects”
with known locations

o Examples:
e Triangulation at sea

https://www.paddlinglight.com/articles/navigation-fixes-and-

triangulation/ 3 » %
PENTEN @
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Map based update

e Measure distance, bearing, etc to “objects”
with known locations

o Examples:
e Triangulation at sea
e Trilateration in GPS system

Satellite 1
a

https://gisgeography.com/trilateration-triangulation-gps/
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Map based update

e Measure distance, bearing, etc to “objects”
with known locations

e Pros?

e Cons?
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Map based update

e Measure distance, bearing, etc to “objects”
with known locations

e Pros
o No drift, position in world frame
e Cons

e Need to correctly associate measurement
with part of map, (typically) lower frequency
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L ocalization

e Two step process
e Prediction step
e Dead reckoning estimation
e Motion model: X,,1 = f(X|Uxs1)

2 P(Xis1 | Xk Ugsq)
e Increases uncertainty
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Localization Lecture

L ocalization

e Two step process

e Prediction step
e Dead reckoning estimation
e Motion model: X, ;.1 = f(X,|Upi1)

2 P(Xis1 | X, Ups1)

e Increases uncertainty

e Update step
e Correct estimate with map based position
e Measurement model: z,.1 = h(Xy41)

2 P(Zk+1 | Xis1)
e Decrease uncertainty
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Bayesian filter formulation

Prediction based on control input uy:

P(Xy+11Zk/Uk+1) = IP(Xk+1|Uk+1,Xk) P(xy|Z,,Uy) dx,
= distribution smeared out (uncertainty increases)

Update with new measurement z,, :

P(Xk+11Zk+1/Uk+1) = N P(Z1 I X 1)P (X1 1 ZikrUkr1)
—->distribution more peaked (uncertainty decreases)

Patric Jensfelt DD2410



Localization Lecture

Bayesian filter formulation

motion model often given by odometry
Prediction based on control input uy:

P(Xyk+11Zk,Uks1) = ﬂp(xk+1|uk+1,xk) P(Xxk|Z,,Uy) dx,

Update with new measurement z,, :
P(Xk+11Zk+1/Uk+1) = N P(Z1 I X 1)P (X1 1 ZikrUkr1)
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Bayesian filter formulation

motion model often given by odometry
Prediction based on control input uy:

P(Xyk+11Zk,Uks1) = JIP(Xk+1|Uk+1,Xk) P(Xxk|Z,,Uy) dx,

measurement model relating the state X to what you measure z

Update with new measurement, z, -
P(Xk+11Zk+1/Uk+1) = |+ p(zk+1|xk+14p(xk+1lzkruk+1)
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Representing probabilistic information

- What we described so far is general.
- To implement this we need to determine how to represent
the distributions, such as p(x,|Z,,U,)

« Two most common choices

- Gaussian distribution
- Set of particles (sampled based representation)
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Gauss vs particle set for 2D example

- Green ellipse: Gaussian
* Black dots: Samples of the same distribution

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Algorithms for localization

- The two most frequently used algorithms
- Particle filter €«> Sample based representation
- Kalman filter €-> Gaussian
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Particle filter

The particle filter represents probability distributions using a
set of particles, p,, sampled from the distribution.

Each particle represents one “hypothesis” about the state.
Each particle also has a weight, initialized as m=1/N.

D=1 Xy, T}

N NN

particle state weight
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Particle filter

D=1 Xy, T}

N NS

particle state weight

The weight allows us to use fewer particles.
For example, can replace 5 particles by one with 5 times the
weight

Probability — posterior
density

@ weighted

W

@Ppe e e




The particle filter

() _ 0

Prediction step
drift
——Q L drift = noise free

odometry prediction

diffuse . .
diffuse = add noise

observation
density | Sk

b measure
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Particle filter algorithm

+ 0. Initialize the particles given what you know to start with
and with weight 1/N.

- If you know nothing = start with uniform distribution
- Know a lot = start with very peaked distribution

- 1. Use odometry to update all poses of particles and
perturb each particle according to odomety noise

- each particle will experience different noise (independent)
« 2. Use measurements and multiply the weight of each
particle, i, with p(z.|x',), ie the likelihood
- This is the measurement model
- 3. Re-sample "if needed” and then return to 1.
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Play with particle filter

- Prediction (what dictates the spread of particles?)

» Tracking
- Global localization

- Non-Gaussian distributions

- Start from uniform distribution and measure range to point
landmark. What does the position distribution look like?

- What if you have two points?
- What if you measure bearing to a point?
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Update with range to singe landmark

 Clearly not
- I 14
Gaussian!
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Update with range to two landmarks

- Smaller
uncertainty ’
- Now closer to
Gaussian

L4
ok
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Color o s
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Update with angle to single landmark

- Why do we not see a clear peak?

14
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High level summary: particle filter

Very powerful framework

- Can be used for much more than localization

Can represent any distribution (given enough particles)

- Multi-modal no problem!

- Can solve global localization, i.e. starting from uniform distribution
Can handle non-linearities

High dimensionality in the state a challenge

- To sample the state space, the number of particles required grows
exponentially with the number of dimensions.
“the curse of dimensionality”

- Too computationally expensive for some applications
Accuracy depending on number of particles

« Requires some processing to get the “answer”, i.e. what is the state?
(often fits a Gaussian to distribution)
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Gaussian approximation

* The Gaussian approximation to the probability distribution
is quite good when the uncertainty is kept low

- Much more efficient representation than particle set

- N(x,P) where x is the state estimate (the pose) and P is the
estimate error covariance of that estimate.

- 9 parameters for 3D statespace (x:3 + P:6) compared to 3N,
where N>>1 for particle filter

- BUT limited to uni-modal distributions

- Updated by the Kalman Filter
- When there are non-linearities use
- Extended Kalman Filter (EKF) or
- Unscented Kalman Filter (UKF)
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Gaussian approximation
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Extended Kalman Filter
EKF Localization

- System dynamics ("motion model”)
X = FOq_p 1, Wi_1)

- Measurement model \Make noise explicit
Zk — h(xka Vk)

- Assumption on process and measurement noise
(zero-mean and Gaussian)

p(W)~N(O, Q)a
p(V)~N(O, R)
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Localization

Lecture

Extended Kalman Filter (EKF)

- A prediction step and an update step like for the particle

filter

- K is the Kalman gain, weights process vs measurement

noise /

Time Update (“Predict”)

(1) Project the state ahead

X = F(R_ppugp_150)

(2) Project the error covariance ahead

P, = APy AL+ W0 W]

_ Initial estimates for %, _, and P, _|

~

Measurement Update (‘“‘Correct”)

(1) Compute the Kalman gain
- - -1
— T T T
K, = PLH (H P, H, +V, R, V;)
(2) Update estimate with measurement z;
&, = &, + K (2, — h(3},0))
(3) Update the error covariance
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EKF Localization

- Motion model is the same as for particle filter
- Measurement model the same
- Need to calculate Jacobians

- Need to set noise covariance matrices Q and R

- You can think of these as tuning values (just like in the case
for the particle filter)

- Start at values derived from “reasoning” about errors and then
adjust for good performance.
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Play with EKF

e Pure prediction (effect of noise?)

e Incorporate measurements (effect of noise?)
e Disturbances (“kidnapped robot”)

o Global localization

e What about large uncertainty and non-
linearities
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High level summary: EKF Localization

- Computationally very efficient

- Has been used extensively “everywhere” for a long time
- The workhorse in target tracking for example

- Scales well to high dimensions

- Cannot handle multi-modal distributions

- Linearization problematic in cases of large uncertainty w.r.t
to the non-linearities.

- Dynamics very different between estimated (around which we
linearize) and true state (where the system actually is) - bad

estimates
- Need “good enough” initial guess to converge which
depends on the type of use case.

Patric Jensfelt DD2410




Localization Lecture

Limitations of a Gaussian

- A Gaussian cannot represent multi modal distributions!

| 1FE
14
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_——

! Bezft;J\ /1 a E

>

»
>

- “Active global localization for a mobile robot using multiple
hypothesis tracking”, P. Jensfelt and S. Kristensen, IEEE
Transactions on Robotics and Automation, 2001.

- Shows that you can handle multimodal distributions using a
mixture of Gaussians

»
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What about those measurements?

- What can we measure in practice
- Range and bearing to a landmark (e.g. a corner)
- Lines/planes - distances and angles
- Transformation between images/laser scans
- Ray trace in a map to get likelihood of measurement

- What we need:
- Provide likelihood of the measurement given state p(z|x)
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Additional real-world challenges

- Data association is super hard!

- Need to associate a measurement with a landmark / part of a
map

- Ex: What parts of the environment did the M measurements
from the laser come from??
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Topological localization

» Discrete positions (“places”).
- Ex: A room, a subway station, near landmark X
» Pure topological localization depends on place recognition

- Need to recognize the place and at least be able to tell all
places connected to current place apart so that we know how
we move

- Often combined with coarse metric information
- EX: Discretize corridor into segments
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So much more to say

- Localisation is an extremely heavily researched area
- Needed by all (more or less) systems that move
» Localiztion using

- Signal strength of WiFi signals

- BLE

- UWB
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If there is time

* Menti
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Optl Opt3

Opt 2 Opt 4
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