
6  CHAPTER 7 

7.3 Scheil´s Segregation Equation  
 - a Model of Microsegregation 
 
It is not possible to perform an exact calculation of df/dx in 
equation (2) at a mathematical treatment of the solidification 
process of such a complicated geometrical shape as the one in 
figures 2 and 3. In order to analyse the influence of various 
factors on the distribution of the alloying element we have to 
simplify the geometry considerably. For a mathematical treat-
ment of the phenomenon microsegregation we choose the 
simplest possible geometry and consider the volume element 
given in figure 4 on page 7. 

We assume that this volume element represents a small 
interdendritic area and make the following assumptions: 

1. The length of the element equals half the dendrite arm 
 distance, /2. 
2. The volume element is so small that the temperature is the 
 same within the element at any moment. 
3. The solid and liquid phases have the same molar volume Vm. 

If the last assumption is not fulfilled the solidification results in 
a change of the volume of the material. Pores are formed or melt 
flows into the volume element, which might cause macrosegre-
gation. Here we will disregard such complications. Macro-
segregation will be treated in chapter 11. 

7.3.1 Scheil´s Model for Microsegregation 
 
In our first treatment of microsegregation we start with the 
following assumptions 

 The convection and diffusion in the melt is so violent and 
rapid that the melt at every moment has an even composition. 

 The diffusion in the solid phase is so slow that it can be 
completely neglected. 

 Local equilibrium exists between the solid phase and the mel 
The equilibrium can be expressed by the partition constant 

k =
 s

L

x

x
 (4) 
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Figure 4. 

 

Consider figure 4. The solidified material has reached a thick-
ness y and grows with the amount dy  during the time dt. Solidi-
fication of the slice Ady requires a decrease of its concentration 
of alloying element from x L to x s. The amount (x L  x s)Ady/Vm 
of the alloying element has to be moved into the melt. Its 
concentration increases then by dx L. 

This amount of alloying metal is brought to the volume of the 
melt A(/2  y  dy) from the solidified slice Ady and its 
concentration increases from x L  to x L + dx L. A material balance 
for the alloying element gives 
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By reduction and by neglecting the product dydx L  equation (5) 
can be simplified to 
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By introduction of k we can eliminate x s. Integration of 
equation (6) from y = 0 to y and x L = x o  to x L gives 
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where x s  is the initial concentration of the alloying element in 
the melt. 

After integration we get 
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Equation (8) is solved for x L: 
 
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The derivation of equation (9) is to little extent associated to the 
geometrical shape of the volume element. The formula is valid 
for any geometrical shape if 2y/ is replaced by the more 
general variable f which represents the fraction of solidified 
material. f is called degree of solidification or fraction of solid 
phase. Equation (9) in its more general form be written 

   
x

x
x L

 s
 o   k

k
f     1 1            Scheil´s equation (10) 

Equation (10) is called Scheil´s segregation equation after its 
originator. It is important to notice that x L represents the instant 
concentration of the alloying element in the melt while x s stands 
for the concentration of the alloying element in the last 
solidified material. Figure 5 shows how these two 
concentrations vary during the solidification process when f 
changes from 0 to 1 for the special case k = 0.5. 

The dotted lines show the concentrations at three different 
occasions. At the first occasion the melt has a composition 
which slightly exceeds x o. At the second and third occasion this 
concentration has increased exponentially and approaches 
infinity at the end of the solidification process.  

Of course infinity is never reached in reality. A eutectic reaction 
may occur or there will be a homogenisation during the 
solidification process. The homogenisation process, which is 
known as back diffusion, will be discussed in section 7.5.1. 
Besides, Scheil´s equation is only valid for small values of con-
centration of the alloying element because the partition coef-
ficient k is constant only for low values of the concentration x. 

During the treatment of the microsegregation during the solidifi-
cation process above we have disregarded the time and tempera-
ture aspects. The solidification process is controlled by the rate 
of heat removal from the volume element. Normally the heat of 
solidification dominates and the degree of solidification, i. e. the 
fraction of solid phase can accurately be estimated from the 
amount of removed heat. 
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Figure 5. 

The  concentrations  of  the 

alloying  element in  the  melt 

respectively in the last solidi-

fied material during a solidifi-

cation process for  k = 0.5 as  

a function of the fraction solid 

phase. 

 

The temperature represents a secondary variable, which auto-
matically adopts the value required for the condition that the 
instant value of the concentration x L  of the alloying element 
shall lie on the liquidus line in the phase diagram of the alloy 
(figure 6). 

However, there is an experimental method, called controlled 
solidification, where the temperature is determined from 
outside. It controls the solidification process by varying the 
temperature of the material according to a predecided 
temperature gradient (chapter 6, page 43). 
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  Figure 6. 

Phase diagram of a binary alloy. 

Eutectic Solidification 

 
When a molten binary alloy cools and starts to solidify the 
compositions of both the melt and the solid phase change 
gradually and follow the liquidus respectively the solidus lines 
in the phase diagram. As long as these lines are fairly straight 
the partition coefficient k is constant. This is the case for low 
concentrations of the alloying element. 
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We consider the case when Scheil´s equation (equation (10) on 
page 8) is still valid at the eutectic temperature. At this 
temperature we get 

   E k  1   
E 

o L 
E f1  xx  (11) 

where 
L 
E x  =  concentration of the alloying element in the  

      remaining melt at the eutectic temperature 
o x  =  initial concentration of the alloying element in the

      melt 
k  E =  partition coefficient of the alloying element  
f E =  fraction of solid phase at the eutectic temperature. 

 
The fraction of remaining liquid L 

E f  at the eutectic temperature 

equals (1  f E). It is solved from equation (11): 
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where  
L 
E f  =  the fraction of melt at the eutectic temperature, i. e. 

                   at the start of the eutectic reaction. 

 
It is reasonable to assume that the melt, which remains at the 
eutectic temperature, will solidify with eutectic composition and 
structure. Thus the fraction  (1  f E)  in equation (12) also repre-
sents the fraction of the solid, which has a eutectic composition, 
when the molten alloy has solidified completely. 

---------------------------------------------------------------------------- 

Example 1. 

As is seen from the phase diagram of the Al-Cu system the solid 
Al-phase has a maximum solubility of 2.50 at-% Cu at the 
eutectic temperature. The Cu-concentration is 17.3 at-% at the 
eutectic temperature. 
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Part of the phase diagram of 

the system Al-Cu. 

 

According to the phase diagram a melt with an initial Cu-
concentration of 2.50 at- % would be able to solidify to a 
homogeneous Al-phase with substitutionally solved Cu-atoms if 
microsegregation, leading to an uneven distribution of the Cu-
atoms within the solid phase, could be disregarded. It cannot be 
disregarded, however. 

Take microsegregation into consideration by applying Scheil´s 
equation and calculate what fraction of the material, which 
solidifies with a eutectic composition and structure. 

Solution: 

It is reasonable to assume that the melt, which is left when the 
temperature has dropped to the eutectic temperature, will 
solidify eutectically. To calculate the desired fraction we only 
have to calculate the degree of solidification f E from Scheil´s 
equation when the melt has reached the eutectic composition. 
For application of Scheil´s equation we have to know the 
partition constant k. An approximate value of this is 

1445.0
3.17

50.2
=k

L

s 


x

x
 (1´) 

Scheil´s equation is applied on the eutectic melt: 

   k  1   
E 

o L 
E f1  xx   

or 
   .14450  1   

E f10250.0173.0   which can be reduced to 

1023.01445.0f1 0.8555 / 1 
E   
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At the eutectic temperature the fraction f E is solid. The rest, i. e. 
the fraction (1  f E), will solidify with eutectic structure. 

Answer: 10 % of the alloy will solidify with a eutectic composi-  
                tion. 

---------------------------------------------------------------------------- 
 

7.3.2 Validity of Scheil´s Segregation Equation. 
Convection  and  Diffusion  in  Melts  and  
Solid Metals. The Lever Rule 

One of the conditions at the derivation of Scheil´s equation was 
that the melt at every moment is homogeneous. This assumption 
is justified by the presence of convection and rapid diffusion in 
the melt. 

Both these processes are time-dependent and the assumption is 
not fulfilled if the solidification process is rapid compared to the 
convection and the diffusion in the remaining melt. In order to 
understand the factors, which control the microsegregation, one 
has to examine the magnitudes of convection and diffusion. 

 

Convection 

Convection of importance is supposed to occur only in volumes 
with a thickness exceeding 1 mm. Interdendrite volumes have 
normally a thickness smaller than 1 mm. For this reason we will 
neglect convection in connection with microsegregation here. 
The influence of interdendritic convection on macrosegregations 
will be discussed in chapter 11. 

 

Diffusion of Alloying Elements in Metal Melts 
 

In order to examine the  influence  of diffusion on 
microsegrega-tion we will use Einstein´s relation for random 
walk: 

l D t   2   (13) 

where 
l =  average diffusion distance of an alloying atom  
                   during the  time t  
D =  diffusion constant (m 2/s) 
t =  diffusion time. 
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Equation (13) can be used for an estimation of the concentration 
distribution of the alloying element within a dendrite. If the total 
solidification time of the dendrite is chosen as the time t and we 
make the reasonable assumption that the diffusion constant is of 
the magnitude 10  10 m 2/s or larger, the average diffusion dis-
tance can be calculated. The calculations show that an atom 
during this time is able to move more than half the dendrite arm 
distance during the solidification process. 

 
The diffusion rate of an alloying element in a metal melt is 
normally of the magnitude 10   9 – 10  8 m 2/s or > 10  10 m 2/s. 
The diffusion constant of carbon, nitrogen, hydrogen and other 
interstitially solved atoms (foreign atoms between the crystal 
lattice atoms) have the same magnitude in steel alloys, i. e. both 
in austenite and ferrite for example. The conclusion is:  

 

 No concentration gradients are likely to occur in the melt 
during the solidification process.  

 

The diffusion in the melt is rapid enough to prevent such 
gradients. Probably there will be small concentration differences 
of interstitially solved elements in the solid phase, though. This 
matter will be discussed below. 

 

 
Diffusion of Alloying Elements in Solid Metals 

 
When we derived Scheil´s equation we assumed that the 
diffusion in the solid phase could be neglected. For the 
interstitially solved elements carbon, nitrogen and hydrogen in 
both austenite and ferrite in iron-base alloys, no concentration 
gradients have been found.  

 
For substitutionally solved alloying elements there are concen-
tration gradients in some cases. The conclusion is that for these 
elements the assumption that the rate of diffusion in the solid 
phase can be neglected is not always true. The diffusion has to 
be taken into consideration. 
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                  *

 

 In most metals with FCC-structure the diffusion constant is of 
the magnitude 1013 m2/s or less for substitutionally solved 
elements (an alloying atom replaces a metal atom in the crystal 
lattice). 

Examples of metals with FCC-structure are: 

-Fe (austenite), Cu, Al and Pb. 

Figure 7. 

FCC-structure. 

There is an atom (marked with 

a  star  in  the  figure)  in  the 

centre of each lateral surface. 

 In these cases there is probably a certain diffusion in the solid 
phase at the end of the solidification process. This occurs when 
the concentration gradient has become large. 

The assumption that there is no diffusion in the solid phase is 
consequently comparatively good in the cases of FCC-metals. 

 

                  *

 

 The assumption is more uncertain if the solid phase has BCC- 
structure, which is the case for example for ferrite in steel and 
for the -phase in copper alloys. In ferrite the diffusion constant 
for alloying metals is about 10 11 m2/s at 1400 oC. For sulphur in 
ferrite the diffusion constant is 1010 m2/s. 

Examples of metals with BCC-structure are: 

-Fe (ferrite), -brass, Li and V. 

Figure 8. 

BCC-structure. 

There is an atom (marked with 

a  star  in  the  figure)  in  the 

centre of the unit cell. 

  
It is evident from the values of the diffusion constants, given 
above, that there are cases when the diffusion is rapid enough to 
smooth out the differences in composition, i.e. the concentration 
gradient, in the solid phase. If this occurs before the melt has 
disappeared completely, there will be an exchange of the 
alloying element between the melt and the already solidified 
material.  

This phenomenon is called back diffusion. If back diffusion 
occurs after the solidification has been completed, the phenome-
non is called homogenisation.  

In the presence of back diffusion Scheil´s equation (10) on page 
8 does not describe the microsegregation properly but has to be 
modified. This case will be treated on page 31. 
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Lever Rule 
 

In case of very rapid diffusion of the alloying element in the 
solid phase Scheil´s equation can not be used at all. The rapid 
diffusion of the alloying element results in an even distribution 
of the alloying element in each phase, i. e. even compositions in 
the solid phase respectively in the melt. 

Consider a mass element dm. The fraction f of the mass element 
has solidified and the rest, fraction (1  f), is molten. Instead of 
an even concentration x o of the alloying element the concentra-
tion is x L everywhere in the melt and x s everywhere in the solid 
phase. A material balance of the alloying element will be: 
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 Figure 9. 

Phase diagram of a binary 

alloy. 

which gives by aid of equation (4) on page 4 

 k1 f1k

o s 
L 




xx
x           Lever rule (15) 

where 
x o =  initial concentration of the alloying element  
f =  fraction solid phase in the mass element 
k =  partition coefficient (x s/ x L) of the alloying element. 

Equation (15) is called the lever rule. It is valid at rapid diffu-
sion of alloying elements in a solidifying melt. 

Most practical cases are likely to be a hybrid between this 
extreme (rapid diffusion in the solid phase) and the extreme 
represented by Scheil´s equation (no diffusion at all in the solid 
phase). 

 
7.4 Solidification Processes in Alloys 
 
Scheils segregation equation (equation (10) on page 8) is 
independent of the cooling rate of the melt. As was pointed out 
on page 8, time has not been involved in the treatment of 
microsegregation so far.  
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-----------------------------------------------------------------------------
- 

7.5 Influence of Back Diffusion in the Solid 
 Phase on Microsegregation of Alloys 
 
When we derived Scheil´s equation and the lever rule, we did 
not consider the geometrical effects on the distribution of 
alloying elements at solidification.  

As is seen from figure 4 on page 11 in chapter 6 the dendrite 
solidification structure is very complex. Primary and secondary 
arms grow simultaneously. During the growth process some of 
the secondary arms grow faster than other ones. The concentra-
tion distribution of the alloying elements in the solid alloy will 
thus contain a three-dimensional pattern of numerous concen-
tration maximum and minimum.  

For this reason it is difficult to specify a certain diffusion 
distance and calculate the back diffusion. Below we will discuss 
a method to handle this problem and derive an improved and 
successful model for microsegregation, which includes the 
effects of back diffusion. It was primarily derived by Flemings 
and is frequently used in metallurgical literature.  

7.5.1 Scheil´s Modified Segregation Equation 
 
We consider the same volume element as in section 7.3.1 (figure 
4 on page 7) when we derived Scheil´s equation. If back 
diffusion is taken into consideration the basic material balance 
equation (6) on page 7 has to be completed on the right-hand 
side by a term, which represents the amount of alloying element, 
which is transported from the melt back into the solid phase.  

Amount of alloying element  
y

yx
0

s d  (20) 

If this term is included into equation (6) on page 7 and we 
assume that the molar volumes in the solid phase and the melt 
are equal, we get after reduction 
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Increase of alloying    Addition of alloying element   Return of alloying element from  
element in the melt     from the solidified volume       melt to solid (back diffusion) 

 

 

 

 

Figure 14. 

The  concentrations  of  the 

alloying  element in  the  melt 

respectively the  last  solidified 

material during a solidification 

process for  k = 0.5 as a  func-

tion of the fraction solid with 

and without consideration to 

back diffusion. 

The marked area represents the 

effect of back diffusion. 
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Equation (21) is to be compared with equation (6) on page 7. 
The shaded area in figure 14 represents the last term on the 
right-hand side in equation (21), i. e. the effect of back 
diffusion. 

We have to find an expression for the concentration gradient in 
the solid phase close to the interface. This requires in principle 
application of Fick´s second law on the whole solid phase and 
calculation of its concentration distribution. This is a compli-
cated procedure, which has not been done analytically so far. 

An approximate calculation can be performed if we assume that 

d k d s  Lx x   (22) 

In addition, we set up a heat balance equation for the solidifying 
volume element. The amount of heat emitted from the volume 
element can be written 
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where ( dT/dt) is the cooling rate during the solidification 
process. The first term in equation (23) represents the heat of 
fusion and the second one is the amount of heat associated with 
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the temperature decrease. The last one is often small compared 
with the former one. Thus the second term on the right-hand 
side in equation (23) can be neglected. 

We assume further that the amount of heat, which is removed 
per unit time (dQ/dt), is constant. As is seen from equation (23) 
dy/dt also becomes constant if we use these assumptions. We 
can replace dy/dt by / 2, where  is the dendrite arm distance 
and  is the total solidification time. This value is inserted into 
equation (21), which gives 
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Integration and use of the relation L s k xx  gives 

 
d

k

d

k

 L

 L
 s0 o

 L

x

x

y

D yx

x y

1 2

2



   

  


  

1

1

2

2
2

2


 
   

  k

k

k

 L

 o

 s

 s

ln ln
x

x

D y

D









  

which can be reduced to 
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Equation (25) is a modified form of Scheil´s segregation 
equation. A comparison between equations (25) and (10) shows 
that they differ by a correction term B in the denominator 

2 

s k 4
B


D

  (26) 

This correction term is caused by the back diffusion. The 
correction term is unimportant as long as it is << 1. It can be 
seen from equation (25), that the back diffusion becomes more 
and more important at the end of the solidification process, 
when  f  approaches the value 1. 

More detailed calculations require knowledge of the value of the 
parameter B. It contains the solidification time, directly and 
indirectly, because the dendrite arm distance depends on the 
cooling rate. The parameter B contains the ratio 4 /2 and the 
dendrite arm distance decreases with increasing cooling rate. 
The total solidification time  also decreases with increasing 
cooling rate. Thus the factors  and   counteract each other. 

---------------------------------------------------------------------------- 
Example 4. 

The figure below shows that the dendrite arm distance as a 
function of composition of the alloy and the cooling rate is 
known for a number of Al-Cu alloys. Use this knowledge to 
decide whether the importance of back diffusion in Al-Cu alloys 
increases or decreases with the cooling rate. 
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Solution: 

It is reasonable to assume that the heat flux is constant during 
cooling and solidification, which gives: 
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The total solidification time corresponds to f = 1. 
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Next we compare the correction terms, caused by the back 
diffusion for two different cooling rates. 
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Equation (2´) and (3´) are divided with each other, which gives 
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The figure shows that the faster the cooling rate is the smaller 
will the dendrite arm distance be. Quantitatively one can see that 
an increase of the cooling rate with a factor 10 000 leads to a 
decrease of the dendrite arm distance with a factor  12, 
independent of the composition of the alloy. 

The values 4
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both obtained from the figure in the text, are inserted into equa-
tion (4´) which gives 

B

B
 1

 2


10

12

4

2          or         B B 2  1 0 014.  

The B parameter decreases when the cooling rate increases. 

 
Answer: The importance of back diffusion in Al-Cu alloys  
                decreases when the cooling rate increases. 

---------------------------------------------------------------------------- 
 
If   const  0.5  (see equation (10) page 12 in chapter 6) the 
back diffusion in Al-Cu alloys will be independent of the 
cooling rate according to example 2 above. In reality the 
exponent is lower than 0.5. The smaller the back diffusion is the 
larger will the microsegregation be. Thus we can conclude from 
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example 2 that the microsegregation will be stronger the larger 
the cooling rate is. A fast homogenisation after solidification can 
often compensate microsegregation. We will come back to this 
in section 7.6 and in next chapter. 

We integrated equation (24) on page 33 under the assumption 
that the B-parameter was constant. This condition is well 
fulfilled in the many cases when the alloy has a narrow 
solidification interval. However, at broad solidification intervals 
the temperature dependence of D s will be considerable. One 
also has to take the removal of cooling heat into consideration, 
which leads to a temperature decrease in the volume element. 

Scheil´s segregation equation (10) on page 8 shows that the first 
solidified material gets and keeps the composition kx o if the 
back diffusion is small. 

In cases with strong back diffusion the first solidified material 
will smooth out its composition during the continued solifica-
tion. In these cases there are no simple approximate solutions 
but numerical calculations have been performed in special cases. 
One such case is the Al-Cu alloy described in figure 15. 
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Figure 15. 

Concentration distribution of 

Cu in an Al-4.5 w/o Cu alloy  

as  a  function  of  degree  of 

solidification. 
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Figure 15 shows the result of such a numerical calculation for an 
Al-alloy with 4.5 w/o Cu. The calculated partition constant is  
k = 0.136. The first material will thus get the composition 

Cu    w/o61.05.4136.0k o s  cc  

when it is formed. This value corresponds to the lowest point in 
the diagram in figure 15.  

 
When the fraction of solid phase is 0.1 or 10 w/o, the Cu-
concentration in the first solidified material has increased. This 
is illustrated by the short curve which ends at f = 0.1.  

 
The higher curves show how the solidified layer grows and how 
its composition changes. The curves in figure 15 have been 
calculated by use of a B-value of 6.110 6D s. The diffusion 
constant was assumed to vary exponentially with the tempera-
ture. 

 

7.5.2 Choice of Method to Calculate Alloy 
 Composition 
 
Calculation of the concentration of the alloying element as a 
function of the fraction solid phase f = 2y/ is performed as 
follows 

 At high diffusion rates the lever rule is valid  
 (equation (15) on page 15)  

 At low diffusion rates Scheil´s modified segregation equation 
 is valid (equation (25) on page 33). 

 Sheil´s segregation equation (10) on page 8 is valid at solidi-
 fication processes when more than 10 %  of  the structure is 
 eutectic and the diffusion rate is low. 

 When D s = 10  11 m 2/s it is difficult to decide which relation 
 one should use. The cooling rate is allowed to decide. 

     At low cooling rates the lever rule is valid. 

     At high cooling rates Sheil´s modified equation agrees best 
    with reality. 
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7.5.3 Degree of Microsegregation 
 

By use of a microprobe microsegregation in a solidified material 
can be determined. A great number of such investigations have 
been performed on steel alloys. These investigations have 
shown that in most cases the concentration of the alloying 
elements at the centre of a dendrite arm is constant during the 
whole solidification process, provided that the material solidifies 
as austenite. 

 
The reason for this is that homogenisation (page 14) occurs to a 
very little extent during solidification. The concentration distri-
bution in the interdendritic areas are in such a case described by 
Scheil´s modified segregation equation (equation (25) on page 
33 when the primary precipitation is austenite. 

 

Various alloying elements have very different partition 
constants and different tendencies of segregation. In order to 
describe the tendency of segregation the concept of degree of 
segregation has been introduced. 

 Degree of micro- = the ratio between the highest and the 
segregation     lowest measured value of the concen-
      tration  of  the  alloying  element  in a 
     dendrite crystal aggregate. 

    S max
 s

min
 s

x

x
 (27) 

Because the relation x s = kx L is always valid  Scheil´s modified 
segregation equation [equation (25)] can be used for  calculation 
of the degree of segregation. The ratio of L 

max x , when  the  

segre-gation is highest  (2y/ = f = 1), and L 
min x , when the 

segregation is lowest (f = 0), is formed: 
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It has been known for a long time that an increase of the carbon 
content in ternary Fe-Cr-C alloys increases the degree of 
segregation of chromium. The reason for this increase is that the 
partition constant of chromium between austenite and melt 
decreases with increasing carbon content. The result is that the 
segregation increases. 

In steel alloys there are alloying elements or impurities, which 
have partition constants between austenite and melt close to 1 or 
slightly smaller, and substances, which have very small partition 
constants. 

Because the degree of segregation S depends on the partition 
constant k according to equation (28) directly and indirectly (k 
is involved in B too), the degree of segregation can be expressed 
as a function of the partition constant. The result of such 
calculations for steel alloys, which solidify as austenite, is given 
in figure 16.  

The calculations have been performed for two different cooling 
rates, which simulate the cooling rate, close to the centre respec-
tively close to the surface zone in a 9 ton ingot. 
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As expected low k-values correspond to very high values of the 
degree of segregation. For k  0.90 the material becomes 
practically homogeneous. In figure 16 the approximate values of 
the partition constants of the most common alloying elements 
have been plotted. Phosphorous shows the highest degree of 
segregation. 

The cooling rate is faster in the surface zone (dotted line) than in 
the centre. Figure 16 consequently shows that the degree of 
segregation increases with increasing cooling rate. This is 
compensated only too well by the fine structure, which facilitate 
an effective equalisation at the following heat treatment and 
machining. 

In section 7.6 microsegregation and solidification processes in 
iron base alloys will be discussed more in detail because of their 
technical importance. 
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7.6 Solidification Processes and Micro-
 segregation in Iron-Base Alloys 
 
The solidification process in iron-base alloys starts with dendrite 
solidification and precipitation of either ferrite () or austenite 
(). 
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Figure 17. 

Solidification regi
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The microsegregation in the two cases is completely different. 
The difference depends on two factors: 

 the difference between the diffusion rates of the alloying 
 element in ferrite respectively austenite 

 the difference between the partition coefficients of the 
 alloying element in ferrite respectively austenite. 


	L6 - Chap7U-15.pdf
	L6 - Chap7U-6.pdf
	L6 - Chap7U-13.pdf

	Chap7U-25.pdf



