
Chapter

6
NP, PCP and
Non-approximability Results

IN THIS chapter we first present a formal treatment of the complexity
concepts introduced in Chap. 1. This treatment will provide the reader

with a precise machine-based characterization that will be used in Sect. 6.3
to develop the notion of probabilistically checkable proof (in short, PCP).
In Sect. 6.4 we will see how probabilistically checkable proofs can be used
in a rather surprising way to show non-approximability results for NP-hard
optimization problems.

6.1 Formal complexity theory

Historically, all basic concepts of the theory of computational complex-
ity have been stated in terms of Turing machines. Let us introduce this
machine model in the form of an acceptor, a simple form needed for dis-
cussing the complexity of recognition or decision problems.

6.1.1 Turing machines

A Turing machine M can be seen as a computing device (see Fig. 6.1)
provided with:

1. A set Q of internal states, including a start state qS and an accepting
state qA.

Chapter 6

NP, PCP AND NON-
APPROXIMABILITY

RESULTS

2. An infinite memory, represented by an infinite tape1 consisting of
cells, each of which contains either a symbol in a work alphabet Γ
or the special blank symbol ✷.

3. A tape head that spans over the tape cells and at any moment identi-
fies the current cell.

4. A finite control (program) ∆ whose elements are called transition
rules: any such rule ((qi,ak),(qj,al ,r)) specifies that if qi is the cur-
rent state and ak is the symbol in the cell currently under the tape
head, then a computing step can be performed that makes qj the new
current state, writes al in the cell, and either moves the tape head to
the cell immediately to the right (if r = R) or to the left (if r = L) or
leaves the tape head on the same cell (if r = N).

finite control internal states

Q∆

tape head

infinite tape
... ...

Figure 6.1
A Turing machine

We can view M as a computer with a fixed single program. The software
is thus represented by the set of transition rules and the hardware is given
by the tape, the tape head, and the mechanism that controls the head and
changes states. More formally, a Turing machine can be defined as follows.

A Turing machine M is a 6-tuple M = (Q,Σ,Γ,∆,qS,qA) where:Definition 6.1
Turing machine

�

1. Q is a finite set of internal states.

2. The input alphabet Σ is a finite set of symbols (not including the
special symbol ✷).

3. The work alphabet Γ is a finite set of symbols that includes all sym-
bols in Σ and does not include ✷.

1All the following considerations can be easily extended to the case when M has more
than one tape.

176

Section 6.1

FORMAL

COMPLEXITY

THEORY

4. The set of transition rules ∆ is a subset of (Q× (Γ ∪{✷}))× (Q×
(Γ ∪{✷})×{L,R,N}).

5. qS,qA ∈ Q are the starting and the accepting states, respectively.

As a particular case, a Turing machine M is said to be deterministic
(see Sect. 6.1.2) if ∆ is a (partial) function δ : Q× (Γ ∪{✷}) �→ Q× (Γ ∪
{✷})×{L,R,N}. That is, M is deterministic if and only if, for any pair
(qi,ak), there exists at most one transition that can fire if qi is the current
state and ak is the currently read tape symbol. In this case, δ is said to be
the transition function.

In the general case, a Turing machine is said to be nondeterministic (see
Sect. 6.1.3). In this case, for the same pair (qi,ak) there might be several
possible transitions.

A configuration of M is a description of the current overall status of the
computation, including:

1. The current state.

2. The current content of the tape.

3. The current position of the tape head.

Formally, a configuration is an element of

Q× (Γ ∪{✷})∗{#}(Γ ∪{✷})+

where # 	∈ Γ. A configuration (qi,x1x2 · · ·xk−1#xk · · ·xn) means that qi is
the current state, x1x2 . . .xk−1xk . . .xn is the current tape content,2 and the
tape head is positioned on the cell containing xk.

Given any string σ = a1a2 · · ·an ∈ Σ∗ as input to M , the machine starts
in the initial configuration C0 = (qS,#a1a2 · · ·an): that is, M is in the initial
state, with the tape containing only σ, and the tape head on the first symbol.

Any computing step is represented by the application of one transition
rule in ∆ to the current configuration C, and brings M into a different
configuration C′. We denote the occurrence of such a computing step as
C
 C′. Thus, in general, we may define a (finite) computation path as
a sequence C0,C1, . . . ,Cm such that C0 is an initial configuration and Ci

Ci+1, for i = 0, . . . ,m− 1 (notice that it is immediately possible to define
also infinite computation paths).

2It is assumed that all cells to the left of x1 and to the right of xn contain the blank
symbol ✷. Observe that if the input is a finite string then, at any step of the computation,
only a finite portion of the tape contains symbols different from ✷.

177

Chapter 6

NP, PCP AND NON-
APPROXIMABILITY

RESULTS

We assume that a computation halts when either the current state is qA or
no transition rule is applicable to the current configuration. More formally,
for any configuration C = (qi,x1x2 · · ·xk−1#xk · · ·xn), we say that:

1. C is accepting if qi = qA.

2. C is rejecting if qi 	= qA and there is no pair in ∆ whose first element
is (qi,xk).

Similarly, we say that a finite computation path C0,C1, . . . ,Cm is accept-
ing (respectively, rejecting) if Cm is an accepting (respectively, rejecting)
configuration. In an accepting path, Cm must be the first configuration that
contains qA.

If an accepting (respectively, rejecting) configuration corresponds to the
value TRUE (respectively, FALSE), then we have that Turing machines can
be used to compute Boolean functions. It is not hard to extend the defini-
tion of Turing machines so that they can express functions returning out-
puts of arbitrary types. For example, when a Turing machine accepts, the
result of the computation may be defined as the content of the tape between
two occurrences of a special output symbol in Σ not used for anything else
(for example, the symbol $).

6.1.2 Deterministic Turing machines

As stated above, we say that a Turing machine M is deterministic if and
only if for any possible configuration there is at most one applicable com-
puting step.

We say that a string σ ∈ Σ∗ is accepted by M if it leads the Turing
machine to halt in state qA. That is, σ is accepted by M if there exists
m ≥ 0 such that the unique computation path C0,C1, . . . ,Cm starting from
the initial configuration C0 = (qS,#σ) is an accepting path.

Similarly, σ is rejected by M if there exists m ≥ 0 such that the unique
computation path C0,C1, . . . ,Cm starting from the initial configuration C0 =
(qS,#σ) is a rejecting path.

A language L ⊆ Σ∗ is recognized by a deterministic Turing machine M ifDefinition 6.2
Recognized language

�
and only if:

1. Each string σ ∈ L is accepted by M .

2. Each string σ ∈ L is rejected by M .

178

Section 6.1

FORMAL

COMPLEXITY

THEORY

Notice that if L is recognized by M then M halts for all input strings.3

We will refer to the language recognized by a deterministic Turing machine
M as L(M).

Consider the (deterministic) Turing machine with Q = {qS,qA}, Σ = {a,b}, Γ = � Example 6.1
{a,b}, and the following transition function δ:

qS qA

a (qA,a, N) -
b (qS,b, R) -
✷ - -

It is possible to see that such a machine recognizes the language L ⊆ {a,b}∗
consisting of all strings containing at least one a (see Exercise 6.2). The behavior
of this machine with input bba is shown in Fig. 6.2.

... ...b b a

qs

... ...b b a

qs

(qs,b,R)
(qs,b,R)

... ...b b a

qs

(qA,a,N)

... ...b b a

qA

Figure 6.2
An accepting computation
path of the machine of
Example 6.1

Let us consider the (deterministic) Turing machine with Q = {qS,q1,qA}, Σ = � Example 6.2
{a,b}, Γ = {a,b}, and the following transition function δ:

qS q1 qA

a (q1,a, R) (qS,a, R) -
b (qS,b, R) (q1,b, R) -
✷ (qA,✷, N) - -

It is possible to see that such a machine recognizes the language L ⊆ {a,b}∗
consisting of all strings with zero or an even number of a’s (see Exercise 6.1).
The behavior of this machine with input abaab is shown in Fig. 6.3.

3That is, all languages we will deal with are decidable: for the purpose of studying the
complexity of decision problems, we do not have to take into consideration semi-decidable
languages.

179

Chapter 6

NP, PCP AND NON-
APPROXIMABILITY

RESULTS

... ...a b a

qs

(q1,a,R)
(q1,b,R)

(qS,a,R)

a ba b a

q1

a b

... ...a b a

q1

a b... ...a b a

qS

a b

(q1,a,R)

... ...a b a

q1

a ba b a

q1

a b

(q1,b,R)
Figure 6.3

A rejecting computation path
of the machine of

Example 6.2

6.1.3 Nondeterministic Turing machines

Nondeterministic Turing machines correspond to the general definition of
such computing devices. In general, for a nondeterministic Turing ma-
chine M , an arbitrary finite number of computing steps can be applicable
to a given configuration C, i.e., there may exist a set {C1,C2, . . . ,Cr} of
configurations such that C
Ci, for i = 1, . . . ,r. This implies that, given a
nondeterministic Turing machine, there exists a tree of computation paths
starting from the same initial configuration.

We say that a string σ ∈ Σ∗ is accepted by M if at least one such path
leads the Turing machine to halt in state qA. That is, σ is accepted by M if
there exists an accepting computation path C0,C1, . . . ,Cm starting from the
initial configuration C0 = (qS,#σ).

On the other hand, σ is rejected by M if no computation path leads the
Turing machine to halt in state qA. That is, σ is rejected by M if all com-
putation paths starting from the initial configuration are rejecting (notice

180

Section 6.1

FORMAL

COMPLEXITY

THEORY

the asymmetry between the definitions of acceptance and rejection).

qs

qs

qs q1

qs q1

qs qA

1

0

0

1 Figure 6.4
A tree of computation paths
of the machine of
Example 6.3

Let us consider the nondeterministic Turing machine with Q = {qS,q1,qA}, Σ = � Example 6.3
{0,1}, Γ = {0,1}, and the following transition rules:

qS q1 qA

0 {(qS,0, R),(q1,0, R)} - -
1 (qS,1, R) (qA,1, R) -
✷ - - -

The tree of computation paths relative to the input string σ = 1001 is shown in
Fig. 6.4 where an accepting computation path is also highlighted.

The definition of a language recognized by a nondeterministic Turing
machine is then similar to the one given in the deterministic case. As be-
fore, we will refer to the language recognized by a nondeterministic Turing
machine M as L(M).

6.1.4 Time and space complexity

In order to determine the execution cost of a (deterministic or nondeter-
ministic) Turing machine on some input we may refer to two possible
measures:

1. The number of computing steps performed by the machine (time
complexity).

181

Chapter 6

NP, PCP AND NON-
APPROXIMABILITY

RESULTS

2. The amount of different tape cells visited during the computation
(space complexity).

Definitions similar to those in Chap. 1 for decision problems can then be
stated.

A language L is recognized by a deterministic Turing machine M in timeDefinition 6.3
Complexity bounds of Turing

machines

�
O(t(n)) (respectively, space O(s(n))) if L = L(M) and, for each input
string σ ∈ Σ∗ with |σ|= n, M performs O(t(n)) computing steps (respec-
tively, accesses O(s(n)) tape cells).4

The Turing machine given in Example 6.2 recognizes language L in time
O(n) and space O(n). Actually, it is worth noting that the tape is accessed
by the machine only for reading the input string: the machine never writes
anything, since it does not need to store any information. This is due to
the simplicity of language L, that in fact could be accepted also by simpler
types of acceptors. The acceptance or recognition of more complex lan-
guages would indeed require the Turing machine to use the full power of
reading and writing on its tape.

Consider the Turing machine with Q = {qS,q1,q2,q3,qA}, Σ = {a,b}, Γ =Example 6.4 �
{a,b,α,β}, and the following transition function:

qS q1 q2 q3 qA

a (q1,α, R) (q1,a, R) (q2,a, L) - -
b - (q2,β, L) - - -
α - - (qS,α, R) - -
β (q3,β, R) (q1,β, R) (q2,β, L) (q3,β, R) -
✷ - - - (qA,✷, N) -

Such a machine recognizes the language L = {anbn | n ≥ 1} in time O(n2) and
space O(n). Indeed, the machine starts by marking an a (transforming it into an α)
at the beginning of the input string and then goes to mark the first b (transforming
it into a β); it then returns back to the first a and proceeds in the same way until
all a’s are marked, and the string is accepted if an equal number of b’s has been
marked and there are no more bs in the tape. Any other string on the alphabet
{a,b} would be rejected. The first five steps of the machine with input aabbb are
shown in Fig. 6.5.

The space required by the machine is O(n) for storing the string and the time
is O(n2) because, after marking any of the a’s, the machine scans O(n) symbols
until it finds the first unmarked b.

4In general, we want to consider only the amount of tape used for the computation,
excluding cells necessary to hold the input string. If we want to consider the case in which
the space complexity is smaller than the length of the input string we then have to use a
slightly different model of Turing machine with two tapes: the first one is a read-only input
tape that contains the input string and can be scanned only from left to right, the other one
is a (read/write) work tape used for the computation. However, we will not need this model
of computation in this book.

182

Section 6.1

FORMAL

COMPLEXITY

THEORY

... ...a a b

qs

(q1,α,R)
(q1,a,R)

(q2,β,L)

b bα a b

q1

b b

... ...α a b

q1

b b... ...α a β

q2

b b

(q2,a,L)

... ...α a β

q2

b bα a β

q1

b b

(qS,α,R)
Figure 6.5
The first five steps of the
machine of Example 6.4
with input aabbb

We will now relate the complexity of a Turing machine computation to
the complexity of a Pascal program, the computation model informally
described in Chap. 1. Indeed, one can show that each Pascal program
can be simulated by a Turing machine. Moreover, simulating one Pascal
statement does not take more steps than a polynomial in the size of the
input. This means that if the Pascal program runs in polynomial time,
then one can construct a Turing machine that executes the same algorithm
in polynomial time. Since this is true also in the opposite situation of
simulating a Turing machine by a Pascal program, we say that the Pascal
program and the Turing machine models are polynomially related.

Thus, we can define complexity classes as P, PSPACE, and NP using Tur-
ing machines instead of Pascal programs, and using analogous definitions
as in Chap. 1 (recall that with any decision problem P we can associate a
language LP).

For any function f : IN �→ IR, the complexity classes TIMETM(f (n)) and � Definition 6.4
Time and space complexity
classes

SPACETM(f (n)) are the sets of decision problems P whose correspond-
ing language LP can be recognized by a deterministic Turing machine

183

