
Chapter 6

NP, PCP AND NON-
APPROXIMABILITY

RESULTS

in time and space O(f (n)), respectively. Moreover, the complexity class
NTIMETM(f (n)) is the set of decision problems P whose corresponding
language LP can be solved in time O(f (n)) by a nondeterministic Turing
machine.

According to the above definition and because the Pascal program and
Turing machine models are polynomially related, we have that

P = ∪∞
k=0 TIMETM(nk),

PSPACE = ∪∞
k=0 SPACETM(nk),

and
NP = ∪∞

k=0 NTIMETM(nk).

Observe that, according to the above definitions, classes P, PSPACE, and
NP contain decision problems. In the following, however, we will, in some
cases, identify a decision problem with its corresponding language and we
will view these classes as sets of languages.

Before concluding this section, we observe that Turing machines are in
practice not used to design algorithms. However, defining the complex-
ity classes using Turing machines is useful when proving hardness results.
The Turing machine is such a simple computation model that it is rela-
tively easy to express any computation on it using a simple structure like
a Boolean formula. We will soon use this to show a hardness result for
SATISFIABILITY.

6.1.5 NP-completeness and Cook-Levin theorem

Now that we have defined P and NP using the Turing machine computation
model we will proceed to define NP-completeness in this model. Recall
from Chap. 1 that a decision problem P is NP-complete if it is included
in NP and if every problem in NP is polynomial-time Karp-reducible to
P . The Karp-reducibility defined in Sect. 1.3 is stated using a Pascal pro-
gram that transforms an instance of one problem into an instance of an-
other problem. Instead of a polynomial-time Pascal program we can use
a polynomial-time Turing machine that simulates the Pascal program in
polynomial time. Observe that such a Turing machine does not behave as
an acceptor machine as defined in Def. 6.2, but it must return an output
value and is usually called a transducer: the formal definition of a trans-
ducer is left to the reader (see also the end of Sect. 6.1.1).

As stated in Chap. 1, the standard way to show the NP-completeness of
a decision problem is to find a polynomial-time Karp-reduction from some

184

Section 6.1

FORMAL

COMPLEXITY

THEORY

other problem that is already known to be NP-complete. Clearly, such a
process needs some initial NP-complete problem, whose NP-completeness
must be proved by using some other technique.

We now see an important result, known as Cook-Levin theorem, which
shows that SATISFIABILITY is such an initial NP-complete problem.

|Γ|+1 cell
C-variables

1 head
H-variable

space

time

|Q| state
S-variables

t

i

p(|x|)

p(|x|)

Figure 6.6
The Boolean variables of
Cook-Levin theorem

SATISFIABILITY is NP-complete. � Theorem 6.1

SATISFIABILITY has already been shown to belong to NP by providing PROOF
a nondeterministic polynomial-time algorithm that solves it (see Algo-
rithm 1.3). We have then only to show that, given any decision problem
P ∈ NP, we can (Karp-) reduce P to SATISFIABILITY in polynomial time.

Let M be a nondeterministic Turing machine that recognizes LP in time
p(n), for a suitable polynomial p. Given x ∈ Σ∗, we will construct a for-
mula w in conjunctive normal form such that w is satisfiable if and only
if M accepts x in time p(|x|), that is, if and only if x ∈ L. Intuitively, w
will be constructed in such a way that any satisfying truth assignment to
its variables will encode an accepting computation path of M on input x.

In order to simplify the proof, and without loss of generality, we make
the assumption on M that its tape is semi-infinite and that, for any input,
there is no transition trying to overpass the leftmost tape cell: it can be
shown (see Exercise 6.8) that this assumption is justified. Since M on
input x runs in time p(|x|), only the first p(|x|) tape cells may be accessed

185

Chapter 6

NP, PCP AND NON-
APPROXIMABILITY

RESULTS

during the computation. Finally, we will denote with a ⇒ b (respectively,
a ≡ b) the Boolean formula a∨b (respectively, (a∨b)∧ (a∨b)).

The formula w we are going to derive is the conjunction of several for-
mulas, that is, w = wM ∧wI ∧wA∧wT , where:

1. wM specifies the general properties of Turing machines.

2. wI specifies that M has been given string x as input on the tape.

3. wA specifies that M has eventually entered an accepting configura-
tion.

4. wT specifies the particular transition function of M .

The formula w contains the following variables with the corresponding
interpretations (see Fig. 6.6):

1. S(t,k) (0 ≤ t < p(|x|), 1 ≤ k ≤ |Q|) where Q is the set of states of
M : S(t,k) takes value TRUE if and only if M is in state qk at time t
(we let q1 be the initial state qS and q|Q| be the accepting state qA).

2. H(t, i) (0 ≤ t < p(|x|), 0 ≤ i < p(|x|)): H(t, i) takes value TRUE if
and only if M ’s head scans cell i at time t.

3. C(t, i,h) (0 ≤ t < p(|x|), 0 ≤ i < p(|x|), 0 ≤ h ≤ |Γ|) where Γ is the
tape alphabet of M : C(t, i,h) takes value TRUE if and only if cell i
at time t contains the symbol σh (we let σ0 =✷).

Let us now see how the various subformulas of w are built:

1. wM is the conjunction of four formulas wMS, wMH , wMC, and wMT

that specify the following properties, respectively:5

• At any time t, M must be in exactly one state, that is, wMS is
the formula

∧

t

(
∨

k

S(t,k)∧
∧

k1 �=k2

(S(t,k1)⇒ S(t,k2))

)
.

• At any time t, the head must be on exactly one tape cell, that
is, wMH is the formula

∧

t

(
∨

i

H(t, i)∧
∧

i1 �=i2

(H(t, i1)⇒ H(t, i2))

)
.

5Note that here the quantifiers
∧

and
∨

are used just as abbreviations: for example,∧
t F(. . . t . . .) stands for F(. . .0 . . .)∧F(. . .1 . . .)∧ . . .∧F(. . . p(|x|)−1 . . .).

186

Section 6.1

FORMAL

COMPLEXITY

THEORY

• At any time t, each cell must contain exactly one character, that
is, wMC is the formula

∧

t,i

(
∨

h

C(t, i,h)∧
∧

h�=h′
(C(t, i,h)⇒C(t, i,h′))

)
.

• At any two successive times t and t + 1, the tape contents are
the same, except possibly for the cell scanned at time t. That
is, wMT is the formula

∧

t,i,h

(H(t, i)⇒ (C(t, i,h) ≡C(t +1, i,h))).

Notice that wMT is not in conjunctive normal form: however,
it can be easily put in conjunctive normal form with a linear
increase of its length (see Exercise 6.9).

Taking into account the ranges of the values assumed by t, i, h, and
k, the overall length of wM is O(p3(|x|)).

2. If x = σh0σh1 . . .σh|x|−1
, then wI is the formula

S(0,1)∧H(0,0)∧C(0,0,h0)∧C(0,1,h1)∧ ·· ·
· · ·∧C(0, |x|−1,h|x|−1)∧C(0, |x|,0)∧ ·· ·
· · ·∧C(0, p(|x|)−1,0).

3. wA = S(0, |Q|)∨S(1, |Q|)∨ ·· · ∨S(p(|x|)−1, |Q|).
4. wT encodes the set of transition rules for M . It is structured as the

conjunction of p2(|x|)|Q|(|Γ|+1) formulas wt,i,k,h:

p(|x|)−1∧

t=0

p(|x|)−1∧

i=0

|Q|∧

k=1

|Γ|∧

h=0

wt,i,k,h.

For any t, i,k,h, if

δ(qk,σh) = {(qk1 ,σh1 ,rk1), . . . ,(qkd ,σhd ,rkd)},

then (assuming µ(R) = 1, µ(L) =−1, and µ(N) = 0)

wt,i,k,h = (S(t,k)∧H(t, i)∧C(t, i,h))⇒
d∨

j=1

w j
t,i,k,h

187

Chapter 6

NP, PCP AND NON-
APPROXIMABILITY

RESULTS

where

w j
t,i,k,h = H(t +1, i+µ(rkj))∧C(t +1, i,hj)∧S(t +1,k j).

If δ(qk,σh) = /0, then wt,i,k,h is equal to TRUE, for any t and i. The
length of formula wT can be seen to be O(p2(|x|)). As in the case
of wMT , wT is not in conjunctive normal form but it can be put in
conjunctive normal form with a linear increase of its length.

Taking into consideration the whole formula w, it can easily be checked
that its length is O(p3(|x|)) and that it can be derived from x (and from M
and p) in time proportional to its length. Moreover, it is not difficult to
verify that the formula w is satisfiable if and only if M accepts the string x
in time p(|x|).QED

We have thus shown that SATISFIABILITY is NP-complete. Proving the
NP-completeness of other problems is, usually, an easier task since we can
use a decision problem that is already known to be NP-complete.

Let us consider E3-SATISFIABILITY which is the restriction of SATISFIABILITYExample 6.5 �
to instances with exactly three literals per clause. It is clear that such a problem
belongs to NP. To prove that it is NP-complete, we will define a polynomial-
time reduction from SATISFIABILITY to E3-SATISFIABILITY. The reduction will
transform the clauses of the instance of SATISFIABILITY into a set of “equivalent”
clauses containing exactly three (different) literals. More precisely, let Ci be any
clause of the instance of SATISFIABILITY. Then Ci is tranformed into the follow-
ing subformula C′

i , where the y variables are new ones:

1. If Ci = li1 , then C′
i = (li1 ∨ yi,1 ∨ yi,2)∧ (li1 ∨ yi,1 ∨ yi,2)∧ (li1 ∨ yi,1 ∨ yi,2)∧

(li1 ∨ yi,1 ∨ yi,2).

2. If Ci = li1 ∨ li2 , then C′
i = (li1 ∨ li2 ∨ yi)∧ (li1 ∨ li2 ∨ yi).

3. If Ci = li1 ∨ li2 ∨ li3 , then C′
i = li1 ∨ li2 ∨ li3 .

4. If Ci = li1 ∨ li2 ∨ . . .∨ lik with k > 3, then C′
i = (li1 ∨ li2 ∨ yi,1)∧ (yi,1 ∨ li3 ∨

yi,2)∧ . . .∧ (yi,k−4 ∨ lik−2 ∨ yi,k−3)∧ (yi,k−3 ∨ lik−1 ∨ lik).

Clearly, such a reduction can be done in polynomial time. Moreover, it is easy to
prove that the original formula is satisfiable if and only if the transformed formula
is satisfiable (see Exercise 6.12). That is, E3-SATISFIABILITY is NP-complete.

6.2 Oracles

ORACLES WERE mentioned already in Chap. 1: we will here define
them more formally. Oracles will later be used for defining proba-

bilistically checkable proofs, a basic tool for proving non-approximability
results (see Sect. 6.3).

188

