Numerical methods for matrix functions SF2524 - Matrix Computations for Large-scale Systems

 Lecture 13
Reading material

- Lecture notes online "Numerical methods for matrix functions"
- (Further reading: Nicholas Higham - Functions of Matrices)
- (Further reading: Golub and Van Loan - Matrix computations)

Agenda Block D Matrix functions

- Lecture 13: Defintions
- Lecture 13: General methods
- Lecture 14: Matrix exponential (underlying expm(A) in matlab)
- Lecture 14: Matrix square root, matrix sign function
- Lecture 15: Krylov methods for $f(A) b$
- Lecture 15: Exponential integrators

Functions of matrices

Matrix functions (or functions of matrices) will in this block refer to a certain class of functions

$$
f: \mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{n \times n}
$$

that are consistent extensions of scalar functions.

Simplest examples

- If $f(t)=b_{0}+b_{1} t+\cdots+b_{m} t^{m}$ it is natural to define

$$
f(A)=b_{0} I+b_{1} A+\cdots+b_{m} A^{m}
$$

- If $f(t)=\frac{\alpha+t}{\beta+t}$ it is natural to define

$$
f(A)=(\alpha I+A)^{-1}(\beta I+A)=(\beta I+A)(\alpha I+A)^{-1} .
$$

Not matrix functions: $f(A)=\operatorname{det}(A), \quad f(A)=\|A\|$

Definitions

Definition encountered in earlier courses (maybe)

Consider an analytic function $f: \mathbb{C} \rightarrow \mathbb{C}$, with a Taylor expansion with expansion point $\mu=0$

$$
f(z)=f(0)+\frac{f^{\prime}(0)}{1!} z+\cdots
$$

The matrix function $f(A)$ is defined as

$$
f(A):=\sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} A^{i}=f(0) I+\frac{f^{\prime}(0)}{1!} A+\cdots
$$

In this course we are more careful. Essentially equivalent definitions:

- Taylor series: Definition 4.1.1
- Jordan based: Definition 4.1.3
- Cauchy integral: Definition 4.1.4

Applications

The most well-known non-trivial matrix function
Consider the linear autonomous ODE

$$
y^{\prime}(t)=A y(t), \quad y(0)=y_{0}
$$

The matrix exponential $(\operatorname{expm}(A)$ in matlab) is the function that satisfies

$$
y(t)=\exp (t A) y_{0}
$$

More generally, the solution to

$$
y^{\prime}(t)=A y(t)+f(t)
$$

satisfies

$$
y(t)=\exp (t A) y_{0}+\int_{0}^{t} \exp (A(t-s)) f(s) d s
$$

For some problems much better than traditional time-stepping methods.

Trigonometric matrix functions and square roots
Suppose $y(t) \in \mathbb{R}^{n}$ satisfies

$$
y^{\prime \prime}(x)+A u(x)=0 \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{0}^{\prime} .
$$

The solution is explicitly given by

$$
\left.y(t)=\cos (\sqrt{A} t) y_{0}+(\sqrt{A})^{-1} \sin (\sqrt{(} A) t\right) y_{0}^{\prime}
$$

Matrix logarithm in Markov chains

The transition probability matrix $P(t)$ is related to the transition intensity matrix Q with

$$
P(t)=\exp (Q t)
$$

were Q satisfies certain properties. Inverse problem: Given $P(1)$ is there Q such that the properties are satisfied. Method: Compute

$$
Q=\log (P(0))
$$

and check properties.

Further applications in

- Solving the Riccati equation (in control theory)
- Study of stability of time-delay systems
- Orthogonal procrustes problems
- Geometric mean
- Numerical methods for differential equations

See youtube video from Gene Golub summer school: https://www. youtube.com/watch?v=UXWMYrOLQAk

Definitions of matrix functions

PDF lecture notes section 4.1

Polynomials

If $p(z)=a_{0}+a_{1} z+\cdots a_{p} z^{p}$, then the matrix function extension is

$$
p(A)=a_{0} I+a_{1} A+\cdots a_{p} A^{p}
$$

Taylor expansion of scalar function $f(z)$ with expansion point μ

$$
f(z)=\sum_{i=0}^{\infty} \frac{f^{(i)}(\mu)}{i!}(z-\mu)^{i}
$$

Definition (Taylor definition)

The Taylor definition with expansion point $\mu \in \mathbb{C}$ of the matrix function associated with $f(z)$ is given by

$$
f(A)=\sum_{i=0}^{\infty} \frac{f^{(i)}(\mu)}{i!}(A-\mu l)^{i}
$$

When is the infinite sum

$$
\begin{equation*}
f(A)=\sum_{i=0}^{\infty} \frac{f^{(i)}(\mu)}{i!}(A-\mu I)^{i} \tag{1}
\end{equation*}
$$

finite?

Theorem (Convergence of Taylor definition)

Suppose $f(z)$ is analytic in $\bar{D}(\mu, r)$ and suppose $r>\|A-\mu I\|$. Let $f(A)$ be (1) and

$$
\gamma:=\frac{\|A-\mu I\|}{r}<1 .
$$

Then, there exists a constant $C>0$ independent of N such that

$$
\left\|f(A)-\sum_{i=0}^{N} \frac{f^{(i)}(\mu)}{i!}(A-\mu I)^{i}\right\| \leq C \gamma^{N} \rightarrow 0 \text { as } N \rightarrow \infty
$$

Consequence: $f(A)$ finite if f entire function

Simple properties:

- $f(z)=g(z)+h(z) \Rightarrow f(A)=g(A)+h(A)$
- $f(z)=g(z) h(z) \Rightarrow f(A)=g(A) h(A)=h(A) g(A)$
- $f\left(V^{-1} X V\right)=V^{-1} f(X) V \quad(\star)$
$\begin{aligned} \text { - } f\left(\left[\begin{array}{lll}t_{1} & & \\ & \ddots & \\ & & t_{n}\end{array}\right]\right) & =\left[\begin{array}{lll}f\left(t_{1}\right) & & \\ & \ddots & \\ & & f\left(t_{n}\right)\end{array}\right] \\ & f\left(\left[\begin{array}{ccc}t_{1} & \times & \times \\ & \ddots & \times \\ & & t_{n}\end{array}\right]\right)\end{aligned}$
- $f\left(\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right]\right)\left[\begin{array}{cc}f(A) & 0 \\ 0 & f(B)\end{array}\right] \quad(* *)$

Note $g(A) g(B) \neq g(B) g(A)$ unless $A B=B A$

Jordan form definition

Use (\star) with Jordan decomposition $A=V J V^{-1}$:

$$
f(A)=f\left(V J V^{-1}\right)=V f(J) V^{-1}
$$

Use ($\star \star$):

$$
f(J)=f\left(\left[\begin{array}{lll}
J_{1} & & \\
& \ddots & \\
& & J_{q}
\end{array}\right]\right)=\left[\begin{array}{lll}
f\left(J_{1}\right) & & \\
& \ddots & \\
& & f\left(J_{q}\right)
\end{array}\right]
$$

What is the matrix function of a Jordan block?

$$
J_{i}=\left[\begin{array}{cccc}
\lambda & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
& & & \lambda
\end{array}\right]
$$

Example: $f(J)$

Example in Matlab:

$$
A=\left[\begin{array}{lll}
s & 1 & 0 \\
& s & 1 \\
& & s
\end{array}\right]
$$

and $p(z)=z^{4}$. For this case we have

$$
p(J)=\left[\begin{array}{ccc}
p(\lambda) & p^{\prime}(\lambda) & \frac{1}{2} p^{\prime \prime}(\lambda) \\
0 & p(\lambda) & p^{\prime}(\lambda) \\
0 & 0 & p(\lambda)
\end{array}\right]
$$

Can be formalized (proof in PDF lecture notes)...

Definition (Jordan canonical form (JCF) definition)

Suppose $A \in \mathbb{C}^{n \times n}$ and let X and J_{1}, \ldots, J_{q} be the JCF. The JCF-definition of the matrix function $f(A)$ is given by

$$
\begin{equation*}
f(A):=X \operatorname{diag}\left(F_{1}, \ldots, F_{q}\right) X^{-1} \tag{2}
\end{equation*}
$$

where

$$
F_{i}=f\left(J_{i}\right):=\left[\begin{array}{cccc}
f\left(\lambda_{i}\right) & \frac{f^{\prime}\left(\lambda_{i}\right)}{1!} & \cdots & \frac{f^{\left(n_{i}-1\right)}\left(\lambda_{i}\right)}{\left(n_{i}-1\right)!} \tag{3}\\
& \ddots & \ddots & \vdots \\
& & \ddots & \frac{f^{\prime}\left(\lambda_{i}\right)}{1!} \\
& & & f\left(\lambda_{i}\right)
\end{array}\right] \in \mathbb{C}^{n_{i} \times n_{i}} .
$$

Show specialization when eigenvalues distinct

Cauchy integral definition

From complex analysis: Cauchy integral formula

$$
f(x)=\frac{1}{2 i \pi} \oint_{\Gamma} \frac{f(z)}{z-x} d z
$$

where Γ encircles x counter-clockwise. Replace x with A :

Definition (Cauchy integral definition)

Suppose f is analytic inside and on a simple, closed, piecewise-smooth curve Γ, which encloses the eigenvalues of A once counter-clockwise. The Cauchy integral definition of matrix functions is given by

$$
f(A):=\frac{1}{2 i \pi} \oint_{\Gamma} f(z)(z I-A)^{-1} d z
$$

Equivalence of definitions

We have learned about

- Definition 1: Taylor definition
- Definition 2: Jordan form definition
- Definition 3: Cauchy integral definition

Slightly different different definition domains.
Theorem (Equivalence of the matrix function definitions)
Suppose f is an entire function and suppose $A \in \mathbb{C}^{n \times n}$. Then, the matrix function definitions are equivalent.

Which definition valid for

$$
f(x)=\sqrt{x} \text { with } A=\left[\begin{array}{ll}
0 & 1 \\
0 & 4
\end{array}\right] ?
$$

and

$$
f(x)=\sqrt{x} \text { with } A=\left[\begin{array}{ll}
3 & 1 \\
0 & 4
\end{array}\right] ?
$$

General methods
 PDF lecture notes section 4.2

General methods for matrix functions:

- Today: Truncated Taylor series (4.2.1)
- Today: Eigenvalue-eigenvector approach (4.2.2)
- Today: Schur-Parlett method (4.2.3)
- Lecture 15: Krylov methods for $f(A) b$ (4.4)

Truncated Taylor series (naive approach)

First approach based on truncting Taylor series:

$$
f(A) \approx F_{N}=\sum_{i=0}^{N} \frac{f^{(i)}(\mu)}{i!}(A-\mu I)^{i}
$$

Properties

- Can be very slow if Taylor series converges slowly
- We need $N-1$ matrix-matrix multiplications. Complexity

$$
\mathcal{O}\left(N n^{3}\right)
$$

- We need access to the derivatives

The truncated Taylor series is mostly for theoretical purposes.

Eigenvalue-eigenvector approach

If we have distinct eigenvalues or symmetric matrix:

$$
f(A)=V\left[\begin{array}{lll}
f\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & f\left(\lambda_{n}\right)
\end{array}\right] V^{-1}
$$

where $V=\left[v_{1}, \ldots, v_{n}\right]$ are the eigenvectors.

Main properties

- Requires computation of eigenvalues and eigenvectors: Complexity essentially $\mathcal{O}\left(n^{3}\right)$
- Requires only the function value in the eigenvalues
- Can be numerically unstable
- If A is symmetric $V^{-1}=V^{T}$.

Conclusion: Can be used for numerical computations if reliability is not important.

Schur-Parlett method

We know how to compute a Schur factorization

$$
A=Q T Q^{*}
$$

where Q orthogonal and T upper triangular

$$
f(A)=f\left(Q T Q^{*}\right)=Q f(T) Q^{*}
$$

Schur-Parlett method:

- Compute a Schur factorization Q, T
- Compute $f(T)$ where T triangular
- Compute $f(A)=Q f(T) Q^{*}$.

What is $f(T)$ for a triangular matrix?

$f(T)$ where T triangular

Note: $f(T)$ commutes with T :

$$
f(T) T=T f(T) .
$$

* On black board: two-by-two example. Generalization derivation *

Theorem (Computation of one element of $f(T)$)

Suppose $T \in \mathbb{C}^{n \times n}$ is an upper triangular matrix with distinct eigenvalues. Then, for any i and any $j>i$,

$$
f_{i j}=\frac{s}{t_{j j}-t_{i i}}
$$

where

$$
s=t_{i j}\left(f_{j j}-f_{i i}\right)+\sum_{k=i+1}^{j-1} t_{i k} f_{k j}-f_{i k} t_{k j} .
$$

Repeat sub-column by sub-column.

* On blackboard *
* Matlab simulation *

Input: A triangular matrix $T \in \mathbb{C}^{n \times n}$ with distinct eigenvalues
Output: The matrix function $F=f(T)$
for $i=1, \ldots, n$ do
$f_{i i}=f\left(t_{i, i}\right)$
end
for $p=1, \ldots, n-1$ do
for $i=1, \ldots, n-p$ do
$j=i+p$
$s=t_{i j}\left(f_{j j}-f_{i i}\right)$
for $k=i+1, \ldots, j-1$ do
$s=s+t_{i k} f_{k j}-f_{i k} t_{k j}$ end $f_{i j}=s /\left(t_{j j}-t_{i i}\right)$
end
end
Algorithm 1: Simplified Schur-Parlett method

Main properties Schur-Parlett (simplified)

- Requires the computation of a Schur-decomposition $\left(\mathcal{O}\left(n^{3}\right)\right)$ which is often the dominating computational cost.
- The only usage of $f: f\left(\lambda_{i}\right), i=1, \ldots, n$
- Only works when eigenvalues distinct
- Numerical cancellation can occur when eigenvalues close: Can repaired with the full version of Schur-Parlett by using $f^{(i)}(z)$.

