
Lecture notes in numerical linear algebra
Iterative methods for linear systems

x2 Iterative methods for linear systems of
equations

We now consider what is maybe the most fundamental problem in
scientific computing: Find a vector x ∈ Cn such that

Ax = b, (2.1)

where b ∈ Cn is a given vector and A ∈ Cn×n is a matrix. The matrix
A is assumed to be large, sparse and non-singular. This chapter is
about methods which are iterative in nature. In our setting this means
that the method consists of a loop where, in every iteration, we try to
improve an approximate solution to (2.1).

This course block is about iterative meth-
ods. The other most important method
class for (2.1) are direct methods. In con-
trast to iterative methods, direct meth-
ods are designed to determine an exact
solution after a finite number of steps
(in exact arithmetic). The most impor-
tant direct method is Gaussian elimina-
tion which you have learned in basic lin-
ear algebra courses. Gaussian elimina-
tion is also the basis of methods for (2.1)
by computing LU-factorizations.

Different applications lead to matrices A with substantially differ-
ent properties and structures. We cover several methods suitable for
different properties and matrix structures.

Section 2.1: GMRES - Generalized Minimum Residual method

Section 2.2: CG - Conjugate Gradients method

Section 2.3: CGNE - Conjugate Gradients normal equations

Section 2.4: BiCG - BiConjugate gradients method

In many practical situations, these methods do not have satisfactory
performance unless a specialized acceleration technique is applied. We
learn about one of the acceleration techniques called preconditioning in
Section 2.5.

x2.1 GMRES - Generalized minimum residual method

The GMRES method is a method based on the idea that if the residual

r = Ax̃ − b

is small, x̃ is probably a good approximation of x. We try to minimize
the norm of the residual (residual norm) over an appropriate space.
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2.1.1 Derivation of GMRES

It turns out that if restrict our search for an approximation x̃ in a
Krylov subspace, the minimizer of the residual norm can be elegantly
and efficiently computed as a by-product of the Arnoldi method. We

Why do we minimize over a Krylov
subspace? Short answer: We do what
we can, and we know how to compute
an Arnoldi factorization. For problems
of this size, you sometimes only have ac-
cess to the matrix A via a matrix-vector
product (which is often a complicated
program). Arnoldi’s method only in-
volves the matrix A by a matrix-vector
product.

The GMRES-iterates are minimizers of
the residual norm with respect to the
two-norm over a Krylov subspace. In
other methods, which we discuss later,
we optimize over other sets, and use
other norms.

define the approximation xm generated after m steps of GMRES as
minimizers of the residual norm (with respect to the 2-norm) over the
Krylov subspace associated with A and the right-hand side b:

Residual norm vs norm of error: If the
residual Ax̃ − b is zero, the error x̃ − x∗
is zero. Moreover, the relative residual
norm is bounded by the relative error
times the condition number of A, since
∥Ax̃−b∥
∥b∥ ≤ ∥A∥∥A−1∥ ∥x̃−x∗∥

∥x∗∥ . However, a
small residual does not always imply
that the error is small. It is however a
common situation.
Example:
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GMRES iteration m

∥Axm − b∥
∥xm − x∗∥

∥Axm − b∥2 ∶= min
x∈Km(A,b)

∥Ax − b∥2. (2.2)

We have seen earlier in this course that the Arnoldi method produces
an Arnoldi factorization

AQm = Qm+1Hm (2.3)

where Qm is an orthogonal matrix and Hm a Hessenberg matrix. The
following result shows how the solution to (2.2) can be directly com-
puted if we have access to an Arnoldi factorization.

Lemma 2.1.1 (Minimization definition of GMRES iterates). Suppose Qm

and Hm satisfy the Arnoldi relation and q1 = b/∥b∥. Then,

min
x∈Km(A,b)

∥Ax − b∥2 = min
z∈Cn

∥Hmz − ∥b∥e1∥2. (2.4)

Proof. During the proof we need the following property of orthogonal
matrices. If Q ∈ Rm×k with m ≥ k is an orthogonal matrix, then,

∥Qz∥2
2 = zTQTQz = zTz = ∥z∥2

2. (2.5)

Since Km(A, b) = span(q1, . . . , qm) we can reparameterize the set over
which we minimize. The conclusion of the theorem follows from (2.3)
and (2.5):

We start iteration with q1 = b/∥b∥

Use the Arnoldi relation (2.3) and
that q1 = Qm+1e1.

Use (2.5) with Q = Qm+1.

min
x∈Km(A,b)

∥Ax − b∥2 = min
z∈Cn

∥AQmz − b∥2

= min
z∈Cn

∥AQmz − ∥b∥q1∥2

= min
z∈Cn

∥Qm+1Hmz − ∥b∥Qm+1e1∥2

= min
z∈Cn

∥Qm+1(Hmz − ∥b∥e1)∥2

= min
z∈Cn

∥Hmz − ∥b∥e1∥2

The approximations xm are computed by solving the linear least-
squares problem in the right-hand side of (2.4) and setting xm = Qmz.

The overdetermined linear system is of dimension (m+1)×m which
is much smaller than size of the original matrix. Hence, it is typically
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much cheaper, than other operations in the algorithm. We extend the
Arnoldi method by computing a least squares solution in every itera-
tion, leading to Algorithm 1.

When β = 0, GMRES has (so-called)
break-down. This turns out to be not
as dramatic as one might expect as we
shall illustrate later.

Input: The matrix A and vector b.
q1 = b/∥b∥, H0 =empty matrix
for m = 1, 2, . . . do

Compute x = Aqm

Orthogonalize x against q1, . . . , qm by computing h ∈ Cm and
x⊥Cm such that QTx⊥ = 0 and

x⊥ = x −Qh.

Let β = ∥x⊥∥
Let qm+1 = x⊥/β

Let

Hm = [Hm−1 h
0 β

]

Solve the overdetermined linear system by computing
z∗ ∈ Rn such that:

min
z∈Rm

∥Hmz − e1∥b∥∥ = ∥Hmz∗ − e1∥b∥∥

Compute approximate solution x̃ = Qmz∗
end

Algorithm 1: GMRES. Note that all steps except the last step is
identical to the Arnoldi method.

2.1.2 Convergence theory

Finite termination of GMRES

The definition of a Krylov subspace implies that we add one vector
at a time (unless we have break-down which corresponds to β = 0).
After m steps, Km(A, b) is therefore of dimension m and Km(A, b) =
Cn and we try to minimize over the entire space. This means that
after at most m steps, GMRES will terminate with an exact solution.
GMRES is a method intended for very large problems, and in most
practical situations, m steps of GMRES is computationally infeasable.
It is our hope that the method generates a reasonable approximation
much earlier than after m iterations.

Non-increasing residual norm

Due to the definition of GMRES-approximations as solutions to the
minimization problem (2.2) we have a nice property: The solution can
in a certain sense not become worse by further iteration. This is due to

Lecture notes - Elias Jarlebring - Autumn 2017

3

version:2017-11-13, Elias Jarlebring - copyright 2015-2017



Lecture notes in numerical linear algebra
Iterative methods for linear systems

the fact that sequence of Krylov subspaces corresponds to an expand-
ing set Km(A, b) ⊆ Km+1(A, b), for any m. Therefore,

∥rm+1∥ = min
x∈Km+1(A,b)

∥Ax − b∥ ≤ min
x∈Km(A,b)

∥Ax − b∥ = ∥rm∥.

Hence, if xm is the GMRES-approximation at step m,

Note that a non-increasing residual
norm does not imply a non-increasing
error norm. A typical example where xm
are GMRES-approximations:
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GMRES iteration m

∥Axm−b∥
∥b∥∥xm−x∗∥
∥x∗∥

the norm of the residual vector Axm − b is not increasing.

Convergence factor bound for diagonalizable matrices

Further analysis of convergence is simplified by the use polymomial
sets.

Definition 2.1.2 (Polynomials and 0-normalized polynomials).

Pm ∶= {polynomials of degree at most m} (2.6a)

P0
m ∶= {p ∈ Pm ∶ p(0) = 1} (2.6b)

With this polynomial set, we can express the residual corresponding
to any Krylov approximation with a normalized polynomial.

Matrix polynomials. We here use the
notation of matrix polynomials. If p(z) =
α0 +⋯+ αmzn we define

p(A) ∶= α0 I + α1 A +⋯+ αm Am.

We will learn more about functions of
matrices in block 4 of this course.

Lemma 2.1.3 (Krylov subspace equivalence). For any A ∈ Cn×n and
b ∈ Cn,

{b − Ax ∶ x ∈ Km(A, b)} = {p(A)b ∶ p ∈ P0
m}. (2.7)

Lemma 2.1.3 has a very compact nota-
tion. In words: If x is a vector in a
Krylov subspace, then the correspond-
ing residual b − Ax, can be expressed as
p(A)b where p is a normalized polyno-
mial. The converse is also true.

Proof. The proof is based on the fact that

Km(A, b) = {α0b+⋯+αm−1 Am−1b ∶ α1, . . . , αm−1 ∈ C} = {q(A)b ∶ q ∈ Pm−1}

By direct application to the left-hand side of (2.7) we have that

{b − Ax ∶ x ∈ Km(A, b)} = {b − Aq(A)b ∶ q ∈ q ∈ Pm−1}.

Note that r = b − Aq(A)b for some q ∈ Pm−1 if and only if r = p(A)b for
some p ∈ P0

m since p(z) = 1− zq(z). Hence,

{b − Aq(A)b ∶ q ∈ q ∈ Pm−1} = {p(A)b ∶ p ∈ p ∈ P0
m}.

Theorem 2.1.4 (Main convergence theorem of GMRES). Suppose A ∈
Cn×n is an invertible and diagonalizable matrix. Let A = VΛV−1 be the
Jordan decomposition of A, where Λ is a diagonal matrix. Let xm, n = 1, . . .
be iterates generated by GMRES. Then,

GMRES convergence is here expressed
with a min-max bound over the eigen-
values. There are more accurate min-
max-characterizations of the conver-
gence of GMRES, where instead of opti-
mizing in the eigenvalues, the optimiza-
tion set is the (so-called) pseudospectra.

∥Axm − b∥
∥b∥

≤ ∥V∥∥V−1∥min
p∈P0

m

max
i=1,...,n

∣p(λi)∣.
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Use Lemma 2.1.3

Use Jordan decomposition

Use that for any polynomial
p(VBV−1) = Vp(B)V−1.

Norm is submultiplicative

Proof.

∥rm∥ = min
x∈Km(A,b)

∥b − Ax∥

= min
p∈P0

m

∥p(A)b∥

= min
p∈P0

m

∥p(VΛV−1)b∥

= min
p∈P0

m

∥Vp(Λ)V−1b∥

≤ min
p∈P0

m

∥V∥∥V−1∥∥p(Λ)∥∥b∥.

Since Λ is a diagonal matrix we have

p(Λ) = p(

⎡⎢⎢⎢⎢⎢⎢⎣

λ1

⋱
λn

⎤⎥⎥⎥⎥⎥⎥⎦

) =

⎡⎢⎢⎢⎢⎢⎢⎣

p(λ1)
⋱

p(λn)

⎤⎥⎥⎥⎥⎥⎥⎦

. (2.8)

Moreover, the two-norm of a diagonal matrix can be expressed explic-
itly. Since

∥

⎡⎢⎢⎢⎢⎢⎢⎣

γ1

⋱
γn

⎤⎥⎥⎥⎥⎥⎥⎦

∥2
2 = λmax(

⎡⎢⎢⎢⎢⎢⎢⎣

γ1

⋱
γn

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

γ1

⋱
γn

⎤⎥⎥⎥⎥⎥⎥⎦

T

) = ( max
i=1,...,n

∣γi∣)
2

.

(2.9)
If we combine (2.8) and (2.9) we have

∥rn∥ ≤ min
p∈P0

m

max
i=1,...,m

∥V∥∥V−1∥∣p(λi)∣∥b∥,

which concludes the proof.

r

c

Re

Im
eigenvaluesCorollary 2.1.5 (Single localization disk). Suppose A ∈ Cn×n satisfies the

same conditions as in Theorem 2.1.4. Moreover, suppose all eigenvalues are
contained in a disk of radius r centered at c ∈ C,

λi ∈ D̄(c, r), for i = 1, . . . , n.

Then,
∥Axm − b∥

∥b∥
≤ ∥V∥∥V−1∥( r

∣c∣
)

m

.

Proof. The result follows from Theorem 2.1.4 by considering the poly-
nomial

The polynomial (2.10) is sometimes
called the Zarantonello polynomial. It is
the minimizing polynomial over a disk
in the sense that

min
p∈P0

m

max
z∈D̄(c,r)

∣p(z)∣ = max
z∈D̄(c,r)

∣q(z)∣ = ( r
∣c∣ )

m

where q ∈ P0
m defined by (2.10).

q(z) ∶= (c − z)m

cm . (2.10)

Since q ∈ P0
m, we have

min
p∈P0

m

max
i=1,...,m

∣p(λi)∣ ≤ max
i=1,...,n

∣q(λi)∣ = max
i=1,...,n

∣c − λi∣m

∣c∣m
≤ rm

∣c∣m
.

Lecture notes - Elias Jarlebring - Autumn 2017

5

version:2017-11-13, Elias Jarlebring - copyright 2015-2017



Lecture notes in numerical linear algebra
Iterative methods for linear systems

Corollary 2.1.5 requires that the eigenvalues are contained in a disk
and the bound is only useful if the disk does not include the origin.
This type of relative localization is only a sufficient condition for fast
convergence, and certainly not a necessary condition. For instance,
if the eigenvalues are localized in other ways, we can still have fast
convergence. The following corollary shows that if the eigenvalues are
bounded in two small disks we can also have fast convergence.

r1

c1
r2

c2

Corollary 2.1.6 (Two localization disks). Suppose A ∈ Cn×n satisfies the
same conditions as in Theorem 2.1.4. Moreover, suppose all eigenvalues are
contained in the union of two disks of radius r1, r2 centered at c1, c2 ∈ C,

λi ∈ D̄(c1, r1)∪ D̄(c2, r2), for i = 1, . . . , m.

Furthermore, suppose r1 ≥ r2 and assume that ρ < 1 where

ρ ∶=

¿
ÁÁÀ r1(r1 + ∣c1 − c2∣)

∣c1∣∣c2∣
.

Then,
∥Axm − b∥

∥b∥
≤ ∥V∥∥V−1∥ ρm−1

Proof. Let k ∈ N be m/2 rounded downwards such that m−1
2 ≤ k ≤ m

2 .
That is, if m is even k = m/2 and k = (m − 1)/2 if m is odd. We can then
bound

min
p∈P0

m

max
i=1,...,n

∣p(λi)∣ ≤ min
p∈P0

2k

max
λ∈λ(A)

∣p(λ)∣

= min
p∈P0

2k

max( max
λ∈λ(A)∪D̄(c1,r1)

∣p(λ)∣, max
λ∈λ(A)∪D̄(c2,r2)

∣p(λ)∣)

We will bound the minimum with the specific polynomial q ∈ P0
2k:

q(z) ∶= (c1 − z)k

c1

(c2 − z)k

c2
.

Suppose λi ∈ D̄(c1, r1), then

∣q(λi)∣ ≤
rk

1
∣c1∣k

(r1 + ∣c1 − c2∣)k

∣c2∣k
= ( r1(r1 + ∣c1 − c2∣)

∣c1∣∣c2∣
)

k

such that

max
λ∈λ(A)∪D1

∣q(λ)∣ ≤ ( r1(r1 + ∣c1 − c2∣)
∣c1∣∣c2∣

)
k

= ρ2k.

On the other hand, if λj ∈ D̄(c2, r2), we analogously have that

∣q(λj)∣ ≤ ( r2(r2 + ∣c1 − c2∣)
∣c1∣∣c2∣

)
k

.
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such that
Use theorem assumption: r1 ≥ r2

max
λ∈λ(A)∪D1

∣q(λ)∣ ≤ ( r2(r2 + ∣c1 − c2∣)
∣c1∣∣c2∣

)
k

≤ ( r1(r1 + ∣c1 − c2∣)
∣c1∣∣c2∣

)
k

= ρ2k.

Hence, by using that 2k > n − 1
Use that ρz ≤ ρz1 when ρ < 1 and z1 ≤ z.

min
p∈P0

m

max
i=1,...,n

∣p(λi)∣ ≤ max
i=1,...,n

∣q(λi)∣ ≤ ρ2k ≤ ρn−1.

x2.2 Conjugate gradients (CG)

One of the disadvantages of GMRES (and any method based on the
Arnoldi method) is that the computation time associated with the or-
thogonalization grows with iteration. More precisely, in order to carry
out k steps, the accumulated computation time for Gram-Schmidt or-
thogonalization is

tGMRES,orth = O(nk2). (2.11)

The quadratic dependence on k, makes it expensive to carry out many
The CG method has the nice feature
that the computation-time per iteration
is constant such that the accumulated
computation-time is linear in the itera-
tion count:

0 20 40 60 80 100

Iteration k

A
cc
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ed
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-t
im

e GMRES: O(nk2
)

CG: O(nk)

iterations. In this section and the following sections, we introduce
some other methods based on Krylov subspaces which do not suffer
from this problem.

The method we study in this section (Conjugate Gradient method)
is derived under the assumption:

We assume that the matrix A is symmetric and positive definite.

This will allow us to avoid the expensive orthogonalization in GMRES.

Definition of CG-iterates with residual minimization with respect to A-norm

The conjugate gradient method is tightly coupled with a somewhat
unusual norm. If A is a symmetric positive definite matrix, the matrix
can be used to define a weighted two-norm:

The relation (2.12) only defines a norm
if A is symmetric positive definite. Note
that A−1 is symmetric positive definite
if A is symmetric positive definite, such
that ∥ ⋅ ∥A−1 also defines a norm.

∥z∥A =
√

zT Az. (2.12)

Analogous to GMRES, CG is a method which generates iterates that
are minimizers of the residual. In contrast to GMRES, the residual
norm is measured with respect to the A−1-norm, which we will not
need to compute but only use in the definition of the approximation.

Definition 2.2.1 (CG iterates). The CG-iterates for a matrix A are the min-
imizers of ∥Ax− b∥A−1 over the mth Krylov subspace. That is, the CG-iterates
x1, x2, . . . satisfy

min
x∈Km(A,b)

∥Ax − b∥A−1 = ∥Axm − b∥A−1 , m = 1, 2, . . . (2.13)
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This definition can equivalently be reformulated as an orthogonality
condition on the residual.

Lemma 2.2.2 (Optimization). The following statements are equivalent:

(i) The approximation xm is the minimizer of (2.13)

(ii) The residual is orthogonal to Km(A, b), such that

rT
mQ = 0 (2.14)

where rm = b − Axm for some matrix Q such that span(Q) = Km(A, b).

Proof. We square both sides and reformulate the problem

∥Axm − b∥2
A−1 = min

x∈K(A,b)
∥Ax − b∥2

A−1 = min
x∈K(A,b)

(Ax − b)T A−1(Ax − b) =

min
z∈Rm

(AQz − b)T A−1(AQz − b) = min
z∈Rm

zTQT AQz − 2bT AQz + bT A−1b.

(2.15)

This is an unconstrained quadratic optimization problem. The matrix
The derivation of (2.16) from (2.15) is
based on the fact that the minimizer p
of c(p) = pT BT Bp + α with respect to p
for any α for any B ∈ Rn×m with full
columns span satisfies Bp = 0. This
stems from the fact that the Hessian of
c(p) is 2Bp.

QT AQ is symmetric positive definite since A is symmetric positive def-
inite. The local optimality condition (corresponding to zero gradient),
is therefore also the global optimality condition:

0 = (AQz − b)TQ = rT
mQ. (2.16)

The orthogonality of the residual against
the Krylov subspace is in (2.16) is one of
the main reasons to use the A−1-norm,
and will allow us to derive an efficient
algorithm in the following section.

CG orthogonality example

Before diving into the technical derivation of Algorithm 2 we illustrate
the orthogonality of CG. If we generate a basis with the Arnoldi and
let Q in (2.16) be the Q-matrix forming a basis of a Krylov subspace,
the matrix Q is orthogonal to the residual.

>> A=gallery(’wathen’,10,10); m=length(A);

>> b=ones(m,1);

>> m=5; % number of iterations

>> [x]=cg(A,b,m); % Run n steps of CG

>> [Q,H]=arnoldi(A,b,m);

>> norm(Q(:,1:(m-1))’*(b-A*x)) % should vanish

ans =

1.5249e-14

◯
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Derivation of CG from a low-term recurrence ansatz

The CG-method is commonly used in
the field of optimization. The solution
to a linear system Ax = b where A is
symmetric positive definite is equivalent
to finding the (global) minimizer of the
quadratic functional c(q) = qT Aq − bTq +
β. In that context the update vectors pm
are usually referred to as the gradient.

Now let pm denote a correction direction at step m and let αm denote
a scaling of the correction direction. In formulas,

xm − xm−1 = αm pm−1. (2.17)

We shall later uniquely specify the scaling αm.
The residual plays an important role in our derivation and we de-

note the residual associated with xm:

rm ∶= b − Axm. (2.18)

The correction of xm in terms of pm in (2.17) can also be interpreted
as correction of the residual since rm = b − Axm = b − A(xm−1 + αm pm−1)
such that

rm = rm−1 − αm Apm−1. (2.19)

Our derivation is based on an ansatz. We make the following as-
sumption on xm and pm which leads to an algorithm. The algorithm
generates unique approximations xm which we later show are mini-
mizers in the sense of (2.13) by applying Lemma 2.2.2, thereby show-
ing that the assumption is valid.

One justification in our reasoning for As-
sumption 2.2.3 is that we want a three-
term recurrence algorithm, which means
that we do not have to store more than
three vectors at any point in time. With
this assumption we reach an algorithm
which only invoves xm, rm and pm. In
this course we learned about the Lanc-
zos method, whic is another three-term
recurrence method (but not directly ap-
plicable to linear systems).

Assumption 2.2.3 (Short-term recurrence ansatz). We assume that there
is a sequence of scalars αm and βm such that the search direction vector pm is
a linear combination of the search direction vector and the residual

pm = βm pm−1 + rm. (2.20)

where rm is defined by (2.18) and xm defined by Definition 2.2.1

Note that except for the (not-yet-specified) scalars, αm and βm, the
equations (2.17), (2.20), and (2.19) form an iteration if x0 is given and
we set r0 = b. Moreover, at any point in the execution of the algorithm,
only three vectors need to be stored: xm, pm and rm. The algorithm is
said to be a three-term recurrence method.

The CG method is a short-term recur-
rence Krylov method. There are other
short-term recurrence Krylov methods
for symmetric matrices such as MIN-
RES and SYMMLQ (not covered in this
course). Among these methods CG is the
most common choice, often justified by
the fact that these methods have similar
convergence, and CG requires the least
number of floating point operations per
iteration.

We now need to determine αm and βm. In order to simplify our
notation, we define matrices with columns consisting of the vectors
introduced above:

X ∶= [x1, . . . , xm] , R ∶= [r0, . . . , rm−1] , P ∶= [p0, . . . , pm−1]

The update formulas can be expressed with X, P and R by using the
following transformation matrices

T ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
⋱ ⋱

⋱ −1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −β1

⋱ ⋱
⋱ −βm−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

α1

⋱
αm

⎤⎥⎥⎥⎥⎥⎥⎦

.
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The relations (2.17), (2.20) and (2.19) are correspondingly

XT = PD (2.21)

PB = R (2.22)

APD = RTT − rmeT
m (2.23)

These relations, imply directly that each sequence of vectors form a
basis of a Krylov subspace.

Lemma 2.2.4 (Krylov subspace span). Suppose α1, . . . , αm, βm, . . . , βm are
non-zero. Let x1, . . . , xm, p0, . . . , pm−1 r0, . . . , rm−1, be the vectors generated
by (2.17), (2.20) and (2.19) with x0 = 0 and r0. Then,

Km(A, b) = span(b, Ab, . . . , Am−1b) (2.24a)

= span(x1, . . . , xm) (2.24b)

= span(p0, . . . , pm−1) (2.24c)

= span(r0, . . . , rm−1). (2.24d)

Proof. From (2.22) and (2.21), we have directly that the columns of P,
R and X span the same subspace, since B, T and D are non-singular General property: If W = VZ where Z

is non-singular, then span(w1, . . . , wp) =
span(v1, . . . , vp).matrices.

In order to show that they span a Krylov subspace, suppose that the
conclusion is satisfied for j = 1, . . . , n − 1 and

span(b, Ab, . . . , Am−1b) = span(R) = span(P).

Then there exists an upper triangular matrix U such that [b, . . . , Am−1b] =
PDU, since D is non-singular. Hence, from (2.23) we have

[b, . . . , Amb] = [b, A[b, . . . , Am−1b]] =
[b, APDU] = [b, (RTT − rmeT

m)U] = [R, rm][e1, (TT − em+1eT
m)U]

The matrix [e1, (TT − em+1eT
m)U] is non-singular since it is upper trian-

gular with non-zero diagonal elements.

Orthogonality properties: Since xm are defined as minimizers, the
rm vectors must satisfy the property (2.14). Moreover, the span of
r0, . . . , rj−1 is Krylov subspace (due to equation (2.24d)), rT

i rj for j =
0, . . . , i − 1, or in matrix notation RT R is a diagonal matrix

RT R =

⎡⎢⎢⎢⎢⎢⎢⎣

rT
0 r0

⋱
rT

m−1rm−1

⎤⎥⎥⎥⎥⎥⎥⎦

. (2.25)

Hence

the residual vectors of CG are orthogonal.
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By multiplying (2.23) from the left with PT we have

PT RTT − PTrmeT
m = PT APD

and therefore (from PTrm = 0)

PT RTT D−1 = PT AP. (2.26)

From (2.25) and (2.22) we find that PT R = (RT P)T = (RT RB−1)T is a
lower triangular matrix. Hence, the left-hand side of (2.26) is a prod-
uct of lower triangular matrices (which is again an upper triangular
matrix) and the right-hand side is a symmetric matrix (since A is sym-
metric). Therefore the matrix in (2.26) must be a diagonal matrix:

The fact that the update vectors of
the conjugate gradients satisfy an A-
conjugacy condition (2.27) is the justifi-
cation for its name. The pm vectors (gra-
dients) are A-conjugate (equivalently A-
orthogonal).

PT AP =

⎡⎢⎢⎢⎢⎢⎢⎣

pT
0 Ap0

⋱
pT

m−1 Apm−1

⎤⎥⎥⎥⎥⎥⎥⎦

(2.27)

In other words, pT
m Api = 0 for i = 0, . . . , m − 1, and which in words is

said

the update-vectors of CG are A-orthogonal.

Derivation of orthogonality and formulas for αm and βm. With some
further analysis we can now establish explicit conditions on αm and
βm.

Lemma 2.2.5 (Orthogonality of CG). Suppose xm, pm and rm are generated
by (2.17), (2.20) and (2.19), with scalar coefficients αm and βm which are
selected such that for all m we have

0 = rT
m−1rm−1 − αm pT

m−1 Apm−1 (2.28a)

0 = pT
m−1 Apm−1αmβm − rT

mrm (2.28b)

and suppose α1, . . . , αm ≠ 0. Then, (2.25) and (2.27) are satisfied. That is,
RT R and PT AP are diagonal.

Proof. The proof is done by induction, essentially by using the update
relations for xm, pm and rm in matrix notation. Suppose RT R diagonal
and PT AP diagonal. We show that RTrm = 0 and PT Apm = 0:

0 = RTrm = RTrm−1 − αmRT Apm−1 (2.29a)

= emrT
m−1rm−1 − αmBT PT Apm−1 (2.29b)

= emrT
m−1rm−1 − αmem pm−1 Apm−1 (2.29c)

Moreover,

0 = PT Apm = PT Apm−1βm + PT Arm

= em pT
m−1 Apm−1βm + (AP)Trm

= em pT
m−1 Apm−1βm +D−1TRTrm −D−1emrT

mrm

= em pT
m−1 Apm−1βm − 1

αm
emrT

mrm
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The relations for αm and βm can be made explicit as follows. By solving
(2.28a) for αm we have

αm =
rT

m−1rm−1

pT
m−1 Apm−1

. (2.30)

Similarly, from (2.28b),

βm = rT
mrm

αm pT
m−1 Apm−1

(2.31a)

= rT
mrm

rT
m−1rm−1

(2.31b)

These choices of αm and βm can be combined into an algorithm which
is commonly called the conjugate gradient method (Algorithm 2).

Corollary 2.2.6 (Ansatz is correct). If αm and βm are finite, the approxi-
mation xm is the minimizer in sense of Definition 2.2.1.

Proof. When selecting αm and βm according to (2.30) and (2.31) we
clearly have that (2.29) is satisfied. Therefore, QTrm = 0 with Q = R.
The conclusion follows from Lemma 2.2.2, with Q = R which satisfies
Km(A, b) = span(R) according to Lemma 2.2.4

x0 = 0, r0 = b, p0 = r0

for m = 1, 2, . . . do

αm = rT
m−1rm−1

pT
m−1 Apm−1

xm = xm−1 + αm pm−1

rm = rm−1 − αm Apm−1

βm = rT
mrm

rT
m−1rm−1

pm = rm + βm pm−1

end

Algorithm 2: Conjugate Gradient method (Hestenes and Stiefel
variant)

Convergence of CG

Read TB pages 298-301. The proof of theorem TB Thm 38.5 is not a
part of the course.

x2.3 Conjugate gradients normal equations (CGNE)

CGNE is described in TB pages 304-305In the previous section we illustrated that under the assumption that
the matrix A is symmetric and positive definite, we can derive an al-
gorithm which in a certain sense is better than GMRES. The attractive
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feature is the short-term recurrence, and that the computation time per
iteration is constant.

With the success of CG in mind, we now (in this section and the
next section) approach the natural next question:

Are there short-term recurrence methods also for matrices which are not
symmetric positive definite?

The short answer is yes. As usual, there is no free lunch and it comes
at a price.

The idea of CGNE is simple. If we multiply Ax = b with AT we
obtain

AT Ax = ATb (2.32)

which is a linear system of equations Bx = c with

B = AT A

and c = ATb. Note that B is symmetric and positive definite. We just
learned CG which is a method for symmetric positive definite prob-
lems, and CGNE is based on applying CG on (2.32). The algorithm is
identical to Algorithm 2, but r0 = b replaced with r0 = ATb and Apm

replaced by AT(Apm).

2.3.1 Computation cost CGNE

Note that CGNE is a short-term recurrence method. The matrix vector
products are often the computationally dominating part with short-
term recurrence methods. Since, CGNE requires two matrix multipli-
cations, CGNE is in a certain sense twice as expensive as CG.

2.3.2 Relationship GMRES and CGNE

We have seen that CG minimizes the residual with respect to a partic-
ular norm. Since CGNE is equivalent to CG with a particular matrix,
CGNE also satisfies a minimization property. From (2.13) we find that
the CGNE iterates satisfy

∥Bxm − c∥B−1 = min
x∈Km(B,c)

∥Bx − c∥B−1

The objective function in the right-hand side can be simplified further
as follows

∥Bx − c∥2
B−1 = ∥x − x∗∥2

B

= (x − x∗)T AT A(x − x∗)
= (Ax − Ax∗)T(Ax − Ax∗)
= (Ax − b)T(Ax − b) = ∥Ax − b∥2

2.
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Hence, CGNE minimizes the residual with respect to the standard Eu-
GMRES and CGNE both minimize the
residual with respect to the standard Eu-
clidean norm, but over different sub-
spaces.

clidean norm. Note that GMRES also minimizes the residual with
respect to the standard Euclidean norm. However, a big difference is
that GMRES minimizes the residual over the subspace

Km(A, b)

whereas CGNE minimizes the residual over the subspace

Km(AT A, ATb).

These subspaces have very different approximation properties and
most of the time CGNE subspace has worse approximation proper-
ties.

2.3.3 Convergence of CGNE

Recall definition of singular values:√
λ(AT A).

We can directly apply the convergence results for CG to CGNE and
obtain the min-max bound

∥en∥B

∥e0∥B
≤ min

p∈P0
m

max
i=1,...,n

∣p(λi(AT A))∣.

The only difference (in the right-hand side) in relation to CG, is that
the maximization is with respect to the eigenvalues of AT A instead of
the eigenvalues of A. The square root of the eigenvalues of the matrix

Except for some bounds such as
max(∣λi(A)∣) < max(∣λi(AT A)∣), there
are few relationships between the eigen-
values of the matrix and the singular
values. Still, often the singular values
squared are often more spread than the
eigenvalues.

AT A are also known as the singular values, and are often more spread
out than the eigenvalues.

For symmmetric matrices, λi(AT A) =
λi(A2) = λi(A)2, such that the singu-
lar values squared equals the eigenval-
ues squared.

Example: Singular values vs eigenvalues

Although CGNE should not be applied to symmetric postive definite
matrices we now do so to illustrate the difference. Suppose the ma-
trix A is symmetric positive definite with eigenvalues as in the figure
below. The eigenvalues squared are also given in the figure below.
Clearly, the singular values squared are more spread out (less clus-
tered) than the eigenvalues and CGNE therefore is expected to have
slower convergence.

1 2 3 4 5 6 7 8 9 10 11 12 13
λi(A)

λi(AT A)

◯

The direct application of the condition number bound for CG leads
to a condition number bound for CGNE,

∥en∥B

∥e0∥B
≤ 2

⎛
⎝

√
K(B)− 1

√
K(B)+ 1

⎞
⎠

n

(2.33)
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where K(B) is the condition number K(B) ∶= ∥B∥∥B−1∥. From the re-
lationship between singular values and the norm of a matrix one can
show that

The proof of (2.34) is based on the
fact that Euclidean norm of a matrix is
∥A∥2 = σmax(A) and ∥A−1∥2 = 1/σmin(A)
where σmin and σmax are the smallest and
largest singular value.

K(B) = ∥B−1∥2∥B∥2 = (∥A∥2∥A−1∥2)2 = K(A)2 (2.34)

Therefore, (2.33) becomes

∥en∥B

∥e0∥B
≤ 2(K(A)− 1

K(A)+ 1
)

m

Note that since K(A) > 1 the condition number bound for CG will
always be smaller than the condition number bound for CGNE. In
fact, it is often considerably smaller. The impact of difference in the
bounds can be seen in the figure below. Clearly, CGNE can only be
expected to be competitive when K(A) is not too large.

0 50 100

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Iteration m

CG: K(A) = 1.5
CGNE: K(A) = 1.5
CG: K(A) = 5
CGNE: K(A) = 5
CG: K(A) = 12
CGNE: K(A) = 12

The improvement of the Biconjugate gra-
dients method named BiCG-stab is the
most used method to solve large and
sparse linear systems of equations. The
paper where it was published is the most
cited paper in the field in the ’90ies.

x2.4 Biconjugate gradients method (BiCG)

Read TB pages 305-309

x2.5 Preconditioning

Read TB pages 313-314.

Further reading

• GMRES and CG can be initiated with a different starting vector.

• Different convergence bounds based on pseudospectra, etc

• Flexible GMRES provides a way to use different preconditioners in
each step

• Floating point arithmetic has substantial impact on the convergence
of CG

• Many problem-specific ways to carry out preconditioning
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